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SUMMARY

The military services have a vitzl concern in assuring that aptitude test
scores are appropriate measures of examinees' true abilities. Substantial

® bonuses have been paid to examinees with sufficiently high scores as

4: enticement to enlist into selected occupatioms. Under mobilization, exemption
K from service will be given to examinees with unacceptably low scores,

ﬁ. Therefore, cheating to improve scores and deliberately picking incorrect

& answers to lower scores are both plausible threats to the integrity of
enlistment testing. The goal of Appropriateness Measurement is.to develop
ways to analyze examinees' responses to multiple-choice tests so as to
identify such inappropriate test responding.

AL

This effort evaluates 1l practical appropriateness indices. Three, which
are based on modern test theory (Item Response Theory), were found to
effectively detect aberrant response patterns across a fairly wide range of
conditions. This success was obtained when the test had many items but was
substantially lessened for military selection test lengths. However, methods
developed for combining information on aberrant respounding across several
different tests resulted in an effectiveness comparable to that found with the
longer tests.
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The results strongly suggest that appropriateness indices can be used
effectively in operational settings. Further research is suggested on a class
of indices called "optimal” which hold the promise of even better
identification of aberrant responding than those indices already identified.
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;b‘ PREFACE

This effort was accomplished under Project 7719, "Development and
Validation of Selection Methodologies."” It represents the continuing effort

e of the Alr Force Human Resources Laboratory to fulfill its research and

4% development (R&D) responsibilities through development and application of

o state-of-the-art methodologies for the continued improvement of the Armed
~¢ Services Vocational Aptitude Battery (ASVAB).

- We wish to thank Bruce Williams and Gregory L. Candell for their help in
u\ conducting the research described in Chapter III. They will be coauthors of
?h the paper summarizing this research when it is submitted for journal

2N publication.
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wee - I. INTRODUCTION AND OVERVIEW
:"::\
At Some examinees' scores on a multiple-choice test may fail to provide

) valid measures of the trait measured by the test. Examinees can obtain
o spuriously high scores because they copy answers from more talented neighbors
;f ; or because they have been given the answers to some questions. Examinees can
'ﬁ'{ obtain spuriously low scores due to alignment errors (answering, say, the
‘\ﬁa tenth item in the space provided for the ninth item, answering the eleventh
Ly item in the space provided for the tenth item, etc.), language difficulties,

atypical educations, and unusually creative interpretations of normally easy
L items.

§ﬁ§¢ Detecting inappropriate test scores is very important in military
f;‘ﬁ testing. For example, substantial recruitment bonuses may be erroneously paid
§5h. to low ability examinees who obtain spuriously high test scores. Many of
L these individuals are likely to fail to complete military technical training
o schools; this leads to high attrition costs. Even when such individuals are
;ﬂ ) able to complete training, they are likely to exhibit low on-the-job
th) performances.
'.I' 3
L'4 Spuriously low scores can also cause serious difficulties in military
or testing. Spuriously low scores can lead to difficulties in filling important
e manpower needs because truly able individuals will be inappropriately
?‘ﬁ disqualified. This problem is likely to be exacerbated in the future as the
' { birthrates of many demographic groups decline.
A
k*' The goal of Appropriateness Measurement is to identify inappropriate test
b scores. In recent years, several methods for identifying these test scores
,) have been devised. In all approaches, response patterns are characterized in
”:?, a way that permits us to assess quantitatively the degree to which an observed
ok response vector is atypical. This quantitative measure is then used to §
,jh: classify response patterns into appropriate (i.e., normal) and inappropriate
:qiu (i.e., aberrant) categories.
7,i. In a series of studies, it has been found that simulated spuriously high
?‘ﬁ. response patterns and simulated spuriously low response patterns can be
e detected by appropriateness measurement. High detection rates have been
k*} obtained despite model misspecification, errors in item characteristic curve
}u : parameter estimates, and the inclusion of inappropriate response patterns in
/A the test norming sample (Levine & Drasgow, 1982). Very high detection rates
s ) have been obtained when response patterns of low ability examinees have been
;*&i modified to simulate cheating and when response patterns of high ability
~-A examinees have been modified to simulate spuriously low responding (Drasgow,
:‘ ﬂ Levine, & Williams, 1985).
e
4&4; Among the many methods that have been proposed, which is best for
— detecting inappropriate test scores on the short unidimensional power subtests
NE} from the Armed Services Vocational Aptitude Battery (ASVAB)? Also, is there
e some clearly superior method that has not yet been proposed? Previous




research on Appropriateness Measurement has generally focused on long
unidimensional tests such as the Scholastic Aptitude Test-Verbal section (SAT-
V) and the Graduate Record Examination-Verbal section (GRE-V). The research
described in this paper was designed to determine which of these indices is
best for ASVAB subtests (in particular, the portion known as the Armed Forces
Qualification Test or AFQT) and, as described below, to decide if the best
method currently available could be significantly improved.

The difficult problem of evaluating the effectiveness of an
appropriateness index was recently solved to a large extent by Levine and
Drasgow (1984; 1987). They developed statistical theory and numerical methods
that enabled them to compute optimal appropriateness indices for given forms
of aberrance. These indices are optimal in the sense that no other statistics
computed from an examinee's item responses can achieve higher rates of
detection (at each error level) of given forms of aberrance. Thus, the
absolute effectiveness of any practical, easy-to-compute appropriateness
index previously suggested in the literature can be determined by comparing it
to an optimal index.

Many appropriateness indices were evaluated in the present effort. The
best practical appropriateness indices based on Item Response Theory (IRT)
were found to be far superior to non-IRT alternatives, such as the
standardized residual from a multiple regression equation. In some cases, the
best practical indices had detection rates that were nearly as high as the
detection rates of optimal appropriateness indices. In other situations,
optimal indices provided far higher detection rates.

At present, optimal indices show promise for use in operational settings.
With further development, optimal indices could be used to provide powerful
detection of specific forms of aberrance that are difficult to detect using
even the best practical indices. For example, suppose a test score falls into
AFQT Category 3A. Does the examinee truly belong to this ability category?
Or is the examinee actually an AFQT Category 3B examinee who was unethically
given the answers to a moderate number of items? An optimal index can be
formulated to test such hypotheses.

In the first study described in this report, 11 practical appropriateness
indices were evaluated and compared to optimal indices. Simulated SAT-V data
were used in the first study because many of the practical indices were
originally proposed in the context of a long unidimensional test. Optimal
indices were found to provide very high rates of_ detection of inappropriate
response patterns. The best practical indices were nearly optimal in some
conditions but fell short of optimal in other conditions. 4

In the second study conducted for this effort, the effectiveness of each
of the practical and optimal indices on a short unidimensional test was o
evaluated using simulated ASVAB Arithmetic Reasoning (AR) subtest data. Rates
of detection of aberrant response patterns were found to be substantially
reduced for the short AR subtest in relation to the long SAT-V test.

Methods were then developed for combining information about aberrance
across several short unidimensional tests. Simulated and actual ASVAB data
for the AR, Word Knowledge (WK), and Paragraph Comprehension (PC) subtests
were used to evaluate the multi-test appropriateness indices. By increasing
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‘- the number of items from 30 on the AR test to 80 on the combined AR, WK, and
o) PC subtests, we obtained detection rates that were comparable to the 85-item
SAT-V.
Ky
e The following chapters describe the present research and development
?ﬁé (R&D) effort, provide concluding remarks, and suggest directions for future
i&m R&D. The results strongly suggest that appropriateness indices based on [RT
ﬁu: can be used effectively in operational settings. Further significant gains in
. detection rates are expected if optimal indices are developed for use in
et operational settings.
s
":"'t
i
jaﬁ II. DETECTING INAPPROPRIATE TEST SCORES ON A LONG UNIDIMENSIONAL
TEST WITH OPTIMAL AND PRACTICAL APPROPRIATENESS INDICES
s Introduction
A ——— e
e
oy It is relatively easy to propose new appropriateness indices.
$ﬂ* Unfortunately, evaluations of the relative merits of the various indices have
o been very difficult in previous research. Cliff's (1979, p. 388) description
LS of a related problem cogently summarized the difficulty in evaluating indices:
- "Now the trouble is that the formulas multiply not just like rabbits, or even
A guppies, but rather like amoebae: by both fusion and conjugation, and there
" seemed to be no general principle to use in selecting from among them."
& Harnisch and Tatsuoka (1983), for example, correlated 14 different indices in
. order to see which pairs were more and less related, but this approach has
K5 limited value in determining which index is best. Furthermore, this approach
:Fﬂ does not determine which indices, if any, are good enough for operational use.
e
34} In the past, two criteria have been used to evaluate appropriateness
- indices: standardization and relative power. Standardization, introduced by
-J Drasgow, Levine, and Williams (1985), refers to the extent to which the
2 conditional distributions (given particular values of the latent trait) of an
Vb index are invariant across levels of the latent trait. There is little
J{ confounding between ability and measured appropriateness for a well-
':B standardized index. Well standardized indices have two attractive features.
Sy First, high rates of detection of aberrant response patterns by well-
. standardized indices cannot be due merely to differences in ability
*0 distributions or number-right distributions across normal and aberrant
nﬁﬁ samples. In contrast, high detection rates obtained by poorly standardized
?J: indices may be due largely to differences in ability distributions. This
'ju point is illustrated in a later section of this chapter. Second, a well-
p standardized index is easy to use in practice because index scores for
- individuals with different standings on the latent trait can be compared
R directly. In contrast, scores on poorly standardized indices can be
':h' interpreted only in relation to their conditional distributions; consequently,
Aﬁ a single cutting score for classification into aberrant and appropriate groups
"q is not possible. Furthermore, it is sometimes very difficult and time-
':ﬁ consuming to obtain the conditional distributions of an appropriateness index.
_ In such cases, the practical usefulness of the index is limited.
.'
'
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Relative power, the second criterijon used to evaluate appropriateness
indices, refers to the ability of a particular index to correctly classify
aberrant response patterns as aberrant, compared to the classification rate of
another index. If some well-standardized index has acceptable power, then it
can be used in operational settings. Unfortunately, no unequivocal
conclusions about the detectability of some form of aberrance are possible if
none of the indices under consideration has adequate power. We do not know
whether or not there exists some other index, not included in the
experimental study, that has acceptable power. In addition, even if an index .
were found to have adequate power for operational use, we do not know whether
or not there is an index, as yet undiscovered, that is substantially superior
to all known indices.

It is now possible to determine the detectability of a specified form of
aberrance by the methods devised by Levine and Drasgow (1984; 1987). They
introduced a general method for ascertaining the maximum power that can be
achieved by any index. Chapters 2, 3, and 4 contain the first major
applications of the method.

By means of a new numerical algorithm, Levine and Drasgow (1984; 1987)
were able to apply the Neyman-Pearson Lemma to specify an appropriateness
index that is optimal in the sense that no other index computed from the item
responses can achieve a higher detection rate (at each error rate) of the
given form of aberrance.

As a result of their research, it is now possible to determine the
absolute effectiveness of an index for detecting a particular type of
aberrance on a given test. The absolute effectiveness of an index is
determined by comparing its detection rate with the detection rate of the
corresponding optimal index. In the first study conducted for this effort,
11 different appropriateness indices were evaluated for their abilities to
detect spuriously high and low response patterns on a long unidimensional
power test: namely, the SAT-V.

The appropriateness indices examined in the first study and some
computational notes are presented in the next section. The extent to which
each index is standardized and the power of each index for detecting several
forms of aberrance are then examined. Some remarks concerning the results
are provided in the final section of this chapter.

Appropriateness Indices

Optimal Indices

Suppose we wish to test a simple null hypothesis against a simple
alternative hypothesis. If the probability of a Type I error is a, then the .
most powerful test is the test that minimizes the probability of a Type II
error among the set of tests with the given Type I error rate. The Neyman-
Pearson Lemma states that maximum power is achieved by a likelihood ratio
test. More specifically, let LN(x) and EA(x) denote the likelihoods of the

data x under the null and alternative hypotheses, respectively. Then the
Neyman-Pearson Lemma states that of all tests with a Type I error rate of a,




none is more powerful than a test obtained from the likelihood ratio
' Ly (x)/Ly(x) .

k The Neyman-Pearson Lemma can be applied in the context of Appropriateness

P Measurement to construct most powerful tests and, consequently, optimal
appropriateness indices. To see how it is used, suppose that local
independence holds, u = (91, ceny gﬂ), and gi(gi|e) is the prcbability of

. response u, to item i by an examinee of ability 6 under the null hypothesis

& that the response pattern is appropriate (normal). Then the likelihood of a
§ response vector u by an examinee of ability 6 is

4

4 .

Prormal (418) = ir_x1 P (u,18).

Y

f If the ability density is f(8), then using elementary probability

&

W

& -

h Byorma1 (W = Phormay(ul®) £(8) d6.

. To apply the Neyman-Pearson Lemma, it is necessary to compute

Z' EAberrant(u)° This quantity can be obtained by carrying the conditioning-
} integrating argument one step further. For concreteness, suppose that the
oy type of aberrance under consideration consists of m randomly selected items
' being modified by the spuriously low treatment. Let §k denote a set

{ indicating the kth way of selecting m of n items (of the [;] ways possible),
o R

ﬁ, let gAberrant(ule'§k) denote the likelihood of response pattern u for

{ an examinee with ability 6 when the items in §k are subjected to the

et

K spuriously low treatment, and let §(§k) denote the probability of §k (i.e.,
= n

o B(S) = 1/(;]). Then

¢

" Paverrant(41®) = é Paberrant(¥l®:5) B(S,)

L)

*
b so that

3
N 1
:g EAberrant(u) [Z gAberrant(UIe'§k) E(§k)] f£(e) a8. (1
b

L) ) , .

- . By taking advantage of the symmetry in the gAberrant(u|e’§k)’ Levine and
! Drasgow (1984) obtained an efficient numerical algorithm for computing
& P (ul®). Using a numerical quadrature formula, the right-hand side of
: —Aberrant
: Equation 1 can be accurately evaluated with an acceptable amount of
) computation. Details about these calculations and a theoretical treatment of
o the general problem are provided by Levine and Drasgow (1984; 1987).

" Thus, it is possible to compute the likelihood ratio
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LR =P (u)/P

—Aberrant -Normal(u) (2)

and test the simple null hypothesis that a response pattern is normal against

the simple alternative hypothesis that the response pattern is aberrant. Due

to the Neyman-Pearson Lemma, the likelihood ratio statistic provides a most

powerful test; consequently, when it is used as an appropriateness index, the
likelihood ratio statistic is as powerful as any index that can be computed

from the item responses. -

Standardized %,

Let z, denote the standardized ?, index (Drasgow et al., 1985). It may
be computed by the formula

= M(G)
Z, _n_~— . (3)

In this formula, %, is the logarithm of the three-parameter logistic
likelihood function evaluated at the maximum likelihood estimate © of 8:

e =
i

" -3

: [Eilog Ei(e) + (1'21)103 Qi(e)]p

where u; is the dichotomously scored (1=correct, O=incorrect) item response

for item i, i =1, 2, ..., n; Q;{8) = 1 - P.(8);
- 1 - <
(@) = ¢+ < = ; (4

1. exp[-ggi(e-gi)]

D = 1.702; and a, gi, and ¢, are item parameter estimates.

-

The conditional expectation of %,, given 6 = 8 , is

3

5: M(8) = [ [P;(®) log B, (8) +Q,(8) log Q(8,)] (5) -
l§ i=z1

' and its conditional variance is -
. . n . : :

-.-: S(8) = J (P.(8)Q.(8)[log(P.(8)/Q.(8))]%). (6)

N: iz 1 ! ! l

"
o Justifications of these formulas can be found in Drasgow et al. (1985).
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Fit Statistics

Two fit statistics for the three-parameter logistic model were suggested
by Rudner (1983) as generalizations of the Rasch model fit statistics used by
Wright (1977) and his colleagues. The first is the mean squared standardized
residual

n - ~ -
o= g PP ARG NOIACHE (1)
The other fit statistic is
n - n - -
F2 = ] [y - Pi(8)]*/ [ B (0)Q(8), (8)
i=1 i=1 1

which Rudner found to
214 and p. 216, where
Equation 8).

be quite effective in some cases (see Rudner, 1983, p.
Rudner uses W3 to denote an expression proportional to

Likelihood Funetion Curvature Statistics

Four indices that provide measures of the "flatness" of the likelihood
function were evaluated. These indices are motivated by the notion that
inappropriate responses will flatten the likelihood function near its maximum
because no single value of 6 will allow the item response model to provide a
good fit to the response vector. Therefore, the likelihood function will not
have a sharp maximum; instead, it will be relatively flat.

Normalized Jackknife. The first measure of the curvature of the
likelihood function is the normalized jackknife variance estimate. In order

to compute this index, let 6 denote the three-parameter logistic maximum
likelihood estimate of ability based on all n test items and let G(J) denote

the estimate based on the n - 1 items remaining when item j is excluded. The
pseudo-values (see, for example, Mosteller & Tukey, 1968) are
~n R ~y
GJ = ng - (Q-I)G(J), 1=1%n2 ..., 0.
The jackknife estimate of 6 is then
~n no .,
- 178 ]
— J:‘l
and the jackknife estimate of its variance is
~n 1 "
. Z(eiv - =1 0,
Var ( 2] ) = ﬁ( D_-1 )
7
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oy The jackknife variance estimate is not a standardized appropriateness
index; there is more Fisher information about 8 in some ability ranges than in

»*
others, and so Var(6 ) is expected to depend upon 8. Lord's (1980) formula
for the information of the three-parameter logistic maximum likelihood
A estimate of 8,

“ n (B;(0)']?
I(e) = 1Ay 78y (9) -
I“
b
)
m can be used to reduce this problem. Since the reciprocal of I(8) is the
F' ~
ﬁf asymptotic variance of 8, the jackknife estimate of variance can be

approximately normalized by evaluating the information function at © and
] computing

; JK = Var(8 )1(0). (10)

It is possible to arrange the calculations for computing JK very
efficiently. We found that one Newton-Raphson iteration was adequate to move

¥

‘ﬁ from @ to G(J). Then, since the first and second derivatives of the log

. likelihood functions for the whole test are sums over n items, the first and
3 second derivatives of the log likelihood functions for the n- 1 item test can

be obtained by single subtractions of already computed quantitxes

»
Consequently, all the pseudo-values, 6 , and JK can be obtained with fewer
i arithmetic calculations than are required in a single Newton-Raphson iteration

KN in the calculation of 6.

Convergence of ©. A possible consequence of a relatively flat likelihood
function for aberrant response patterns is that the number of iterations

required to obtain © may be increased. The number NI of Newton-Raphson

iterations required to obtain 68 can therefore be used as an appropriateness
g index.

Expected versus Observed Likelihood Fynction Curvatures. This index

%
q (O/E) is also motivated by an hypothesis about the likelihood function's
b flatness. If the likelihood function is flatter for aberrant -esponse |
o patterns than for normal response patterns, then we would expect that the
:{ observed information, defined as minus the second derivative of the log
X -
_ likelihood function at 6 given the response vector u (see Efron & Hinkley, °
§$ 1978, p. U457), would be less than the information 1(®) given in Equation 9,
B which (given 8) does not depend upon u. Thus, the sixth index is the ratio of
‘,;: the observed and expected information ;
Iy 3t R ‘
—= O/E = = W ~ / l( 8), (11) ‘
K 8:=6
La
e
; 8
A
™
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:J"
iy where £ is the log likelihood
!1;:‘
n
"t (12) e = ] {u;log £;(8) + (1-u;)log Q,(8)]. (12)
N . i
N i=1
-
r)ﬁ Bayes Posterior Variance. Another statistic closely related to the O/E
"
A

o index is the posterior variance B of the Bayes estimate of 6. It is expected
to be relatively large for aberrant response vectors and relatively small for

e normal response vectors. Thus, it should serve to distinguish between normal
\. and aberrant response patterns.
1¢3]
"ty Item-Option Variance

X

Suppose that we consider the subset of Hik examinees in the test norming

43fﬂ sample who selected option k to item i. It is easy to compute the mean
?‘ﬁ number-right .core zik for these examinees. In this way, we can identify

'$. o]
%hn options to item i that are typically selected by high ability examinees (e.g.,
Al the correct option) and options that are typically selected by lower ability
-~ examinees. For spuriously high and low response patterns, we would expect to
\) -
Ky, observe inconsistency in Xik; sometimes options with low lik are selected and
.’ J
\:; sometimes options with high Zik are selected. For this reason, we evaluated
W the item-option variance
)
JaY = L
o Iov = var(X ) (
\ r
LY
SN as a measure of appropriateness.
..' n’
2 Caution Indices

v‘.‘l

ey Sato's Caution Index. Three “caution indices" were also be examined.
A The first is Sato's (1975) caution index S (see also Tatsuoka & Linn, 1983,
,”‘ but replace y.J with PoJ for a simpler version of their Equation 1). S is
e

et easy to compute and is widely used in Japan. To compute S, suppose that the n
“ test items are ordered from easiest to hardest on the basis of proportion
10 -
I,N right p. in the test norming sample. Let
L 1
e

-\.: n .
£ p - 11 p

- P n . i

—i - 131
1';:

U
‘iﬁ, be the mean proportion correct and suppose that an examinee answers K items
. . .
$ E correctly. If p is a vector containing the B; and g is a perfect Guttman
o response pattern with 13 as its first k elements and Os for the next n-k

" elements, then

I‘p’.
KR, ’

L L

R
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a o~ » -
A

~ o e W2
e e

Cov(u,p)

Cov(g,;)
n -
21 u;(p; -
1:
= 1 - K - - (14)
Z (Ei = E)

Note that the summation in the denominator of the last expression is from 1 to

k (i.e., over the k items with the smallest B values), not 1 to n.

Tatsuoka's Standardized Extended Caution Indices. Two indices that are
related to Sato's caution index are the second and fourth standardized
extended caution indices T2 and T4 presented by Tatsuoka (1984, p. 104).
These two indices (of the four studied by Tatsuoka) were included because
Harnisch and Tatsuoka (1983) found that these indices were not related

(linearly or curvilinearly) to true score and, therefore, 8.

T2 and T4 can be computed relatively easily. Let GJ denote the three-
parameter logistic maximum likelihood estimate of ability for the Jjth person

in the test norming sample of N examinees, and let Pij(ej) be the probability
of a correct response to item i by this person computed from Equation 4. Then
define
1 N
G = 9
& * 1 J§1 £5(8y
and
n
)
— n . —
i=1

To compute T2 and T4 for an examinee in the normal sample or an averrant
sample, let

|~
1]

{21 —

Then

10
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L [(B(8) - u)(g - 0

T2 = = = (15)
(] £,(0)Q,(8)(g,-B)%)""2

and

L [(B(8) - u)(B.(0) - B)

T4 = = ~ = . (16)
(L gi(e)gi(e)(gi(e)-E)zl”2

It should be noted that Equations 14, 15, and 16 are generalizations of
the original caution indices to the situation where item parameters are
estimated in a test norming sample.

Standardization

Problem

Measured appropriateness can be confounded with ability. Drasgow et al.
(1985, p. 74), for example, provide an example of a strong, nearly linear
relation between estimated ability and an unstandardized index. A score of,
say, -50 on this index at one ability level indicates a good fit of the model
to a response vector, but the same index score at other ability levels
indicates a very poor fit. Consequently, an observed difference between the
distributions of index scores for normal and aberrant response vectors is not
unequivocal evidence of index effectiveness. Instead, it may simply reflect
differences in ability or number-right distributions. This problem does not
occur if an appropriateness index is well standardized; that is, if the
conditional distributions (given @) of the index are (approximately) equal
across possible values of 6 for normal examinees.

In practical applications of Appropriateness Measurement, it would be
convenient if a single cutting score could be used to classify response
patterns as aberrant or normal. If the conditional distributions of an index
are not identical, then the interpretation of a score on a practical
appropriateness index must be made vis-a-vis the associated conditional
distribution. Consequently, it would not be possible to use a single cutting
score to classify response patterns as aberrant nor would it be possible to
compare directly index scores of examinees with differing abilities.

We would expect little degradation of the performance of a well-
standardized index if the ability distribution were to change abruptly. Such
a change would be expected, for example, with the ASVAB examinee population in
a period of national mobilization.

ROC Curves

If an index is properly standardized, its distribution will be nearly the
same in subpopulations of normal examinees who differ in ability. Hence, the
index could not be used to distinguish among groups. A standard, very general
method for studying the extent to which some statistic can differentiate
between two groups is the Receiver Operating Characteristic (ROC) curve.

"




Thus, we can study index standardization by using an ROC curve to determine
whether the index distinguishes between groups of normal examinees who differ
in ability.

An ROC curve is obtained by specifying a cutting score t for an index and
then computing

x(t) = proportion of group 1 (say, normal, low ability
examinees) response patterns with index values less
than t (assuming that small index values indicate
aberrance);

y(t) = proportion of group 2 (say, normal, high ability
examinees) response patterns with index scores less
than t.

An ROC curve consists of the points (x(t),y(t)) obtained for various values of

t. The proportion x(t) is called the false alarm rate, and y(t) is called the

hit rate. A detailed example of the construction of an ROC curve is given by
Hulin, Drasgow, and Parsons (1983, pp. 131-134),

An appropriateness index is well-standardized across two ability levels
if the ROC curve lies along the diagonal line y =

Method

Polychotomous item responses (five-option multiple-choice items with
omitting allowed) were simulated using the histograms constructed by Levine
and Drasgow (1983). They used the three-parameter logistic model to estimate
the abilities of 49,470 examinees from the 85-item April 1975 administration
of the SAT-V. Then the examinees were sorted into 25 groups on the basis of
estimated ability. The 4th, 8th, ..., 96th percentiles of the normal (0,1)
distribution were used as cutting scores when sorting examinees. Then the
proportions of examinees choosing each option (treating skipped and not-
reached items as a single response category) were computed for each of the 25
ability groups. Probabilities of option choices were then computed by linear
interpolation between category medians (i.e., the 2nd, 6th, ..., 98th
percentiles from the normal (0,1) distribution).

Five samples of normal response patterns were generated by first sampling
3,000 numbers (6's) from the normal (0,1) distribution truncated to the
[(-2.05, 2.05] interval. (It was necessary to truncate the ability
distribution because interpolation below the 2nd percentile or above the 98th
percentile was not possible with the histograms.) Then low [-2.05 to -1.50),
moderately low (-.70 to -.55), average (-.05 to .05), moderately high (.55 to
.70), and high (1.49 to 2.05] 8 samples of N = 200 each were formed.

Polychotomous item response vectors were then generated for each 8 value.
For each item, the associated histogram was used to compute the conditional
(given ©) probabilities of the six possible responses (treating skipped and
not-reached as the sixth response). A number was sampled from the uniform
distribution on the unit interval, and a simulated response was obtained by
determining where the random number was located in the cumulative distribution
corresponding to the conditional probabilities.

12
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Finally, each of the 11 practical appropriateness indices was computed
for each response vector in each sample. Then ROC curves were computed for

each of the [g] = 10 possible pairs of samples and each of the 11

appropriateness indices.
Results

Figures 1 through 3 present the results for the low-average, average-
high, and low-high comparisons. The results for the other seven comparisons
were consistent with the trends seen in these three figures; consequently,
they will not be presented. Furthermore, only the lower left quarter of the
ROC curve is plotted because it is unlikely that anyone would set a cutting
score that yielded a false alarm rate of more than 50%.

In Figure 1, it is evident that NI, IOV, S, and B are poorly
standardized. This result is not surprising because no explicit steps were
taken to standardize these indices. The standardizations of the z,, F1, F2,
JK, and O/E indices seem reasonably good across low 6 and average 6 groups.
The standardization of T2 and T4 seem somewhat less adequate, although T2 is
well standardized for false alarm rates of less than .20.

The pattern of results in Figure 2 is somewhat different from the results
in Figure 1. In both figures, NI, IOV, and B are poorly standardized, and z,,
F2, JK, and O/E are again well standardized. But F1 is much less well
standardized in Figure 2. In contrast, the results for S and T4 have improved
considerably. The standardization of T2 was better in Figure 1.

Finally, Figure 3 presents the results comparing the low 6 normals to the
high 8 normals. The pattern of results indicates that this comparison is the
most severe test of standardization. Note that at low misclassification
rates, only 2z,, F2, and JK have ROC curves near the diagonal. The
standardizations of NI, IOV, F1, B, and S are all poor. T4 seems standardized
somewhat better than T2.

Power
Problem

Do any of the well-standardized practical appropriateness indices have
adequate power for detecting some form of aberrance? Are any nearly as
powerful as the index that is optimal for the given form of aberrance?

Method

Data Sets. A test norming sample of 3,000 response vectors was created
by sampling 3,000 numbers (8s) from the normal (0,1) distribution truncated to
the [-2.05,2.05) interval. A normal sample of 4,000 response vectors was also
generated in this way. Two thcusand aberrant response vectors were created in
each of 12 conditions. The 12 conditions resulted from varying three factors:
the type of aberrance (spuriously high; spuriously low), the severity of
aberrance (mild; moderate), and the distribution from which simulated
abilities were sampled.
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Six of the aberrant samples contained spuriously high response vectors,
and the remaining six samples contained spuriously low response vectors.
Spuriously high response patterns were created by first generating normal
response vectors (polychotomously scored) and then replacing a given
percentage k of simulated responses (randomly sampled without replacement)
with correct responses. Spuriously low response patterns were also created by
first generating normal response vectors. Then a fixed percentage of items
were randomly selected without replacement, and the responses to these items
were replaced with random responses (i.e., a response was replaced by option A
with probability .2, by option B with probability .2, ..., and by option E
with probability .2). Mildly aberrant response patterns were generated by
using k = 15%. Moderately aberrant response patterns were created using k =

30%.

The third variable manipulated was the ability level of the aberrant
sample. Abilities for the spuriously high samples were sampled from three
parts of the normal (0,1) distribution truncated to [-2.05,2.05]: very low
(Oth through 9th percentiles), low (10th through 30th percentiles), and low
average (31st through 48th percentiles). In all cases, percentile points were
determined after the truncation to [-2.05, 2.05]. These intervals were used
because it is more important to detect spuriously high response patterns for
low ability examinees than for high ability examinees. Similarly, it is more
important to detect spuriously low responses for high ability examinees.
Consequently, abilities were sampled from three above-average ability strata
for the spuriously low samples: very high (93rd percentile and above), high
(65th through 92nd percentiles), and high average (49th through 64th
percentiles). The ability percentiles used here correspond to the percentiles
forming AFQT categories.

Table 1 summarizes the 12 samples of aberrant response vectors. Each of
these 24,000 (=12 x 2,000) response vectors was independently generated.

Analysis. All the item and test statisties required to compute the
practical appropriateness indices were computed using the test norming sample.
These quantities were computed as the first step in the analysis and then used
in all subsequent analyses. LOGIST (Wood, Wingersky, & Lord, 1976) was used to
estimate item parameters and a FORTRAN program was written to compute the
other quantities required.

Then the 11 practical appropriateness indices were computed for the 4,000
response vectors in the normal (responding appropriately) sample. The item
and test statistics estimated from the test norming sample were used in these
calculations. This procedure simulates the process by which practical
appropriateness indices would be computed in many applications. Four optimal
indices were also computed for the normal sample: 15% spuriously high, 30%
spuriously high, 15% spuriously low, and 30% spuriously low. The ability
density f used in Equations ! and 2 was the normal (0,1) density truncated to
the interval [-2.05, 2.05). The histograms used to generate the data were
also used to compute the optimal indices; that is, polychotomous option
characteristic curves were not estimated. (In order for an optimal index to
be truly optimal for the corresponding form of aberrance, it is necessary to
use the true option characteristic curves.)

N RN
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Ability Distributions Used to

Generate Aberrant Samples

Percent of

aberrant responses

Type of aberrance

Spuriously high

Spuriously low

15%
15%
15%
30%
30%
30%

NT[-2.05,-1.3u]
NT(-1.3u,-o.52]
NT(-O.52,-0.05]
NT[-z.os,-1.3u]
NT(-1.3u,_o.52]

NT(-O.SZ,-O.OS]

Np(1.41,2.05]
Np(0.35,1.41]
Np(-0.05,0.35]
Np(1.41,2.05]
N,.(0.35,1.41]
Np(-0.05,0.35]

Note. NT(a,b] is used to denote the standard normal distribution

truncated to the interval (a,b].

Parentheses are used to indicate interval

endpoints that were not included in the interval and brackets are used to

indicate interval endpoints that were included in the interval.
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The 11 practical appropriateness indices were computed for each of the 12
aberrant samples. In addition, the 15% spuriously high optimal index was
computed for the three samples with this form of aberrance; the 30% spuriously
high optimal index was computed for the three samples with this form of
aberrance; etc.

Note that the ability density used in Equations ! and 2 does not match

the ability density of any aberrant sample. The proper interpretation of the
- optimal index is the following: It is the optimal index for the specified

form of aberrance, say 15% spuriously high, in a population where the ability
density is normal (0,1) truncated to [-2.05, 2.05] for both the normal and
aberrant populations and a response vector is either normal or 15% spuriously
high. The normal group does in fact have this ability distribution. By
restricting the abilities of the aberrant group to a subinterval of [-2.05,
2.05], we determined the power in a particular subpopulation of the index that
is optimal for the population as a whole.

Evaluation Criteria. The main criteria used for evaluating the
appropriateness indices were the proportions of aberrant response patterns
that were correctly identified as aberrant when various proportions of normal
response patterns were misclassified as aberrant. These proportions were
determined for all 12 aberrance conditions. This allowed us to determine what
types of aberrant response patterns had acceptably high detection rates using
optimal methods and using practical methods. The characteristics of response
patterns that cannot be detected became evident as a consequence of examining
the 12 aberrance conditions separately.

Results

Before presenting the results for the 12 aberrant samples, we shall
illustrate some problems caused by poorly standardized appropriateness
indices. Table 2 presents detection rates for the 15% spuriously high
aberrant sample for two different samples of normal responses. In one case,
the normal sample consists of the 200 response vectors with the highest 6
values from the normal sample of N _= 4,000 previously described; in the other
case, the normal sample consists of the 200 response vectors with the lowest 8
value. (Results for B are not given because this index was not programmed in
its final form when this table was constructed.)

As shown in Table 2, the IOV index seems to be fantastic when the normal
group consists of high ability normals: It correctly identified every single
aberrant response vector, without a single misclassification of a normal. The
S index appeared to be an excellent index, although not as powerful as I0V.

In contrast, F1 seemed to be an abysmally poor index.

, These results were almost completely contradicted for the low ability

W normals. At a 1% false alarm rate, the detection rate of the I0V index was
- 10% when the normal group consisted of low ability response patterns; it was
{} 100% when the normals were high ability. The comparable rates for S were 78%
uj and 8%, respectively. The results for F1 were in the opposite direction: The
A detection rate was 0% for normals of high ability but 34% for normals of low
ability.
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: Table 2. Selected ROC Curve Points for the
N

15% Spuriously High Treatment, Aberrant

: Response Patterns Generated from 0-9% Ability Range

,f False Proportion detected by R
. alarm

N rate 2, F1 F2 S T2 T4 IOV O/E  JK NI

's Normal Group = 200 High Ability Normals

X 001 38 00 12 62 59 18 1.00 18 13 00

005 44 00 16 76 63 39 1.00 19 14 00

& 01 47 00 3% 78 72 40 1.00 21 15 00

™ 02 56 00 42 82 15 60 1.00 26 21 00

5 03 61 00 53 86 83 65 1.00 30 22 00

< o4 67 00 s4 87T 84 69 1.00 4 26 00

3 5 73 00 57 91 84 69 1.00 4 30 00

& 07 77 01 65 93 89 79 1.00 4 30 00

w3 10 79 o7 T4 96 93 82 1.00 54 35 00

Normal Group = 200 Low Ability Normals

;g 001 26 25 25 00 4 21 00 00 00 00

o 005 31 33 27 06 38 26 05 00 00 00 W
o 01 4y 34 36 08 44 30 10 01 03 00

i 02 48 46 u2 1 49 32 13 03 05 00

3 03 50 48 46 11 50 37 16 o4 09 00

s ol 52 49 s4 20 53 45 18 06 12 00

» 05 61 54 57 24 59 48 23 09 17 00

07 67 63 61 30 64 53 29 1" 19 00

» 10 72 69 67 35 76 62 33 18 23 00
L
i Note. 2z, = standardized £,; F1 = fit statistic 1; F2 = fit statistic

A 2; T2 = - second standardized extended caution index; TM = fourth extended
standardized caution index; IOV = item-option variance; O/E = observed
‘N information divided by expected information; JK = normalized jackknife
estimate of variance; NI = number of Newton-Raphson iterations
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The differences in detection rates for F1, S, and IOV resulted from their
poor standardizations. In contrast, the well-standardized z, had detection
rates of 47% and 44% at a 1% misclassification rate. F2 also had similar
detection rates: 3U4% and 36%. T2 is not standardized as well as T4; however,
the detection rates for T2 were higher than the rates for T4. OQ/E and JK had
moderately dissimilar detection rates across the two sets of normals.

Finally, the detection rates for NI were identical across conditions;
unfortunately, the detection rates were exceedingly poor.

The results for the 15% and 30% spuriously high samples for the low
ability range (Oth through 9th percentiles) are shown in Table 3. In this
case, the normal group consisted of 4,000 response vectors that were generated
from 6 values sampled from the standard normal distribution truncated to
[-2.05,2.05]. Note that the detection rates for z,, F2, and T2 were fairly
close to the rates for LR. It is clear from Table 5 that the 30% spuriously
high treatment is very detectable: LR, z,, and T2 all had detection rates of
90% or more when the error rate was 1%. Even the relative moderate 15%
spuriously high treatment (which affected at most 13 items on the 85-item
test) was fairly detectable: LR and z, had detection rates of 50 and 46% at a
1% error rate. O/E and JK, which were shown to be well standardized in the
previous section of this paper, had little power. At a 1% error rate, 0/E and
JK detected only 22% and 33% of the 30% spuriously high response vectors.

Table 4 presents the results for the 15% and 30% spuriously high
treatment applied to the moderately low ability range (10th through 30th
percentiles). It should be more difficult to detect aberrant response vectors
in this ability range than in the low ability range because the expected
number of responses changed due to the aberrance manipulation is smaller.
Surprisingly, the detection rates for LR did not decrease sharply: At a 1%
error rate, the detection rates were 50% versus 45% for 15% spuriously high,
and 93% versus 89% for 30% spuriously high. The detection rates declined more
rapidly for z, (46% vs. 30% for 15% spuriously high; 90% vs. 75% for 30%
spuriously high) and F2 (34% vs. 21%; 85% vs. 73%). The rates of decline of
T2 and T4 were intermediate. T2 declined from 37% to 33% for 15% spuriously
high and from 91% to 81% for the 30% treatment. T4 declined from 30% to 25%
and from 87% to 79% .

The trends seen in Tables 3 and 4 continue in Table 5, which presents the
results for the 15% and 30% spuriously high treatments applied to the low
average ability range (31st to 4Bth percentiles). As shown in Table 5, the LK
index provided detection rates that are roughly 50% higher than those of the
best practical indices. For example, at a 1% error rate LR had a detection
rate of 34% for the 15% treatment; z,, F2, T2, T4 had detection rates of 18%,
154, 23%, and 20%, respectively. The detection rates were 78% versus 51%,
53%, 5% and 57% for the 30% spurlously nigh condition at a 1% error rate.

Table 6 presents the results for the 15% and 30% spuriously low treatment
applied to the nigh average ability sample (petween the 49th and 6uth
percentiles). It 1s evident that the practica. appropriateness indices dre
quite ineffective relative to the optimal :ndex. At a % error rate,LR had a
L7% detection rate for the 15% treatment; the h:ghest rate for any of the
practical indices was only 16%. The pattern of results for the 30% condition
was similar. Here the LR detection rate was an mpressive 791 when the err.:




" Table 3. Selected ROC Curve Points for Aberrant

Response Patterns Generated from the 0-9% Ability Range

g False Proportion detected by
'f: alarm

. rate LR z, F1 F2 S T2 T4 IOV O/E JK B NI )
?; 15% Spuriously High

) 001 30 26 00 12 10 13 13 13 00 00 00 00

005 43 40 00 27 31 25 21 29 01 02 00 00

. 01 50 46 00 34 45 37 30 42 o4 06 00 00
- 02 59 54 08 44 59 50 41 53 11 12 02 00
b 03 64 60 22 51 67 56 43 63 16 17T 05 00
h. o4 67 64 32 55 72 62 54 70 20 21 09 00
| 05 70 69 40 60 78 66 59 75 24 23 13 Q0
: 07 73 14 52 69 83 73 65 8 31 30 21 00
- 10 77 80 63 76 89 81 73 89 42 39 35 00

30% Spuriously High
001 8 718 00 63 22 75 69 20 01 07 00 00

a 005 91 87 01 81 51 86 80 37 09 17 00 00
t% 01 93 50 1 85 65 91 87 50 22 33 00 00
Cr 02 95 93 44 90 79 92 60 43 49 00 00

95
03 95 95 69 93 85 96 94 70 53 56 00 00
o4 96 96 80 94 88 97 95 76 57 65 00 00

97

98

98

07 97 97 92 97 94 97 86 12 72 01 00
10 98 98 95 98 96

<,

K> »
- 05 97 96 86 95 92 96 80 62 65 00 00
-

98 91 80 78 o4 00

Note. The maximum detection rate among the reasonably well-standardized
indices i3 underlined at each false alarm rate.
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E:E:E: Table 4. Selected ROC Curve Points for the Aberrant
,:::::: Response Patterns Generated from the 10-30% Ability Range
ma
: _,: False Proportion detected by
‘:" alarm
A rate LR z, F1 F2 S T2 T4 IOV O/E JK B NI
N 15% Spuriously High
:,:;" 001 23 14 00 06 01 13 11 00 00 00 00 v
’: 005 37 23 00 16 05 22 17 02 Ul 02 00 00
01 45 30 00 2! 10 33 25 05 03 05 00 00
.” 02 55 38 05 31 19 44 36 09 08 1" 00 00
.:‘j; 03 60 us 15 38 25 49 43 13 12 15 00 00
:;T ol 63 49 22 43 30 53 47 17 15 19 00 uo
:L. 05 66 53 28 47 38 57 51 21 18 21 00 00
07 70 59 41 56 46 64 58 30 26 27 01 00
10 75 65 52 63 58 71 66 40 35 35 03 00
" 30% Spuriously High
001 76 56 00 45 o4 61 60 01 08 17 00 NIy
24 005 85 71 ou 67 15 72 12 04 22 29 00 0
j.:; 01 89 75 1" 73 21 8 79 08 35 43 00 0!
e 02 92 82 34 81 40 8 8 13 52 58 00 O
X 03 93 86 57 86 49 90 90 18 61 64 00 O
, o4 94 88 68 88 56 32 92 22 65 69 00 01
I-Ei 05 95 90 75 90 64 93 93 26 70 72 00 O
p 07 96 92 83 93 71 9% 95 35 77 17 00 0
NS 10 97 94 88 95 80 96 6 45 B4 84 00 O
N
<
e
2%
s N
o
P
o
X
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Table 5. Selected ROC Curve Points for the Aberrant

Response Patterns Generated from the 31-48% Ability Range

. False Proportion detected by
alarm
rate LR 2z, F1 F2 S T2 T4 oV O/E JK B NI

s 15% Spuriously High

. 001 13 07 00 O4 00 09 08 00 01 02 00 00
N 005 26 13 00 12 00 15 W 00 05 05 00 00
| o 3 18 01 15 01 23 20 00 08 10 00 0O
N 02 46 24 06 23 03 32 29 00 16 17 00 uu
A 03 51 31 13 29 05 37 35 00 21 22 00 00
< o4 55 34 19 33 07 42 39 01 25 26 00 00
. 05 58 38 25 37 12 45 44 01 29 28 00 00
2 07 64 44 33 45 17 51 50 02 36 3 00 00
- 10 70 52 42 53 26 58 57 05 43 41 00 00
: 30% Spuriously High
001 59 31 01 31 00 30 00 11 20 00 00
005 72 45 08 47 03 41 00 26 31 00 03
E 01 78 51 15 53 07 51 00 38 44 00 03
o

38
49
57
02 84 59 29 63 14 59 67 00 53 58 00 03
03 87 65 44 69 19 64 72 01 60 63 00 03
; ol 83 68 50 72 23 68 716 OV 64 67 00 03
79
82
817

v 05 91 72 56 15 30 12 02 68 70 00 03
o
5 07 93 77 64 81 39 76 o4 74 75 00 03
) 10 95 82 71 85 43 81 07 79 80 00 03
o

s
o
-




Table 6.

Selected ROC Curve Points for the Aberrant

Response Patterns Generated from the 49-64% Range

False Proportion detected by
alarm
rate LR z, F1 F2 S T2 Ty 10V 0/E JK B NI
154 Spuriously Low
001 29 06 00 03 00 o4 (] 00 00 01 00 00
005 43 12 01 08 00 08 07 00 01 02 00 00
01 47 16 03 1 00 T4 11 00 03 06 00 00
02 56 22 09 17 02 20 17 01 09 12 00 00
03 61 27 17 21 03 24 21 02 12 17 00 00
ol 63 0 24 25 05 28 26 o4 15 20 00 00
05 67 35 29 29 08 32 29 06 18 23 00 00
07 71 40 37 37 13 38 35 10 23 29 00 00
10 76 4 L6 Ly 20 ug L2 17 32 37 00 00
30% Spuriously Low
001 56 19 00 09 00 09 12 01 00 01 00 00
005 75 29 00 20 02 14 20 07 02 05 00 00
01 79 35 01 26 06 23 28 Y 07 14 00 00
02 86 44 08 36 5 32 38 22 20 27 00 00
03 89 51 18 42 22 37 us 30 26 33 00 00
o4 91 55 26 47 27 42 50 37 3 40 00 00
05 93 59 34 52 35 47 55 42 36 43 01 00
07 95 64 Ly 60 45 53 60 54 L6 50 02 00
10 97 70 56 66 56 60 67 66 57 59 05 00




Table 7. Selected ROC Curve Points for the Aberrant

T LR

Response Patterns Generated from the 65-92% Ability Range

False Proportion detected by
Y alarm
rate LR Z, F1 F2 S T2 T4 IOV 0/E JK B NI

g

15% Spuriously Low

\ 001 55 26 05 17 00 1T 12 00 03 09 00 00
) 005 66 38 19 32 0t 26 20 00 12 16 00 01
. 01 68 44 30 37 03 36 26 01 21 26 00 01
.. 02 73 52 47 46 06 45 36 02 32 37 00 O
K. 03 7 58 59 53 09 50 42 03 38 43 00 01
! ol 77 62 65 56 13 55 47 05 42 47 00 O
. 05 78 65 70 60 18 58 51 06 46 50 00 01
~ 07 81 70 76 67 26 63 56 10 52 55 00 01
i 10 83 16 81 72 36 69 63 16 58 62 00 Of
v 30% Spuriously Low

001 80 54 00 40 01 44 45 04 o4 12 00 00
: 05 83 66 08 58 09 54 55 13 15 27 00 00
: 01 91 71 18 62 19 64 63 24 31 44 00 00
" 02 94 78 42 72 32 14 72 32 48 59 00 00

03 95 83 59 77 40 77 17 41 55 6u4 00 00
d ol 96 85 69 80 47 80 80 47 61 71 00 00
05 97 87 75 83 55 8 8 53 67 74 00 00
: 07 98 89 82 87 63 8 86 63 75 80 00 00

10 98 92 88 91 74 90 89 T2 81 8 00 00
e
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Table 8. Selected ROC Curve Points for the Aberrant

Response Patterns Generated from 93-100% Ability Range

>
m: False Proportion detected by
ke alarm
' rate LR z, F1 F2 S T2 T4 IOV O/E JK B NI
,R 15% Spuriously Low
p7 001 73 55 26 39 01 31 23 00 06 12 00 O
005 8 68 59 57 10 4 33 00 15 20 00 08
b 01 81 72 71 62 17 54 41 01 21 30 00 08
o 02 g« 18 82 72 27 63 52 02 33 43 00 08
& o3 8 82 8 77 3 67 57 03 38 49 00 08
'y o4 8 B4 90 80 43 71 63 05 43 5 00 08
" 05 88 87 91 82 50 74 66 06 47 56 00 08
b 07 89 90 93 8 60 79 71 11 56 64 00 08
J': 10 91 92 94 89 69 84 7T 16 64 72 00 08
v 30% Spuriously Low
001 93 88 06 78 10 83 79 09 27 47 00 00
3 005 96 93 38 88 32 90 8 21 53 65 00 03
01 97 95 59 91 47 94 g0 31 68 78 00 03
. 02 98 97 81 94 63 96 94 41 82 88 00 03
2 03 98 98 92 96 72 97 95 51 87 90 00 O3
2N ol 98 98 95 97 76 98 96 59 89 93 00 03
b 05 99 98 96 98 82 98 97 63 91 94 00 03
v, o7 99 98 98 98 88 98 98 72 94 96 00 O3
“ 10 99 9 98 99 93 99 98- 80 96 97 00 03
K
N
%
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rate was 1%; the next best index (z,) detected only 35% of the aberrant
sample.

In Table 7, which presents the results for the 15% and 30% spuriously low
samples with s in the 65th through 92nd percentiles, the practical
appropriateness indices have detection rates that are closer to the rates of
the optimal index. This trend is continued in Table 8, which presents the
results for the spuriously low treatments applied to the highest ability
category (percentiles 93 and above). At a 1% error rate, for example, LR .
detected 81% of the 15% spuriously low response patterns; z,, F2, and T2 had
detection rates of 72%, 62%, and 54%. For the 30% treatment, the rate for LR
was 97%; z,, F2, and T2 had rates of 95%, 91%, and 9u%.

Drasgow and Guertler (1987) recently presented a utility theory approach
to the use of Appropriateness Measurement in practical settings. Their
approach requires the densities of an index in normal and aberrant samples.
Consequently, normal distributions were fitted to the distributions of z,, F2
and T4 by equating the first two moments of the normal distribution to the
empirical moments. These analyses were based on the first 1,000 response
vectors from the normal sample and each of the 12 aberrant samples. The
fitted means and standard deviations are presented in Table 9. As a crude
measure of fit, Kolmogorov-Smirnov test statistics were computed to compare
the empirical distributions to normal distributions with the observed moments.
No significant (a = .05) departures of empirical distributions from the
corresponding fitted normal distribution were found. As the Kolmogorov-
Smirnov test can be conservative when fitted moments are substituted into the
theoretical distribution (Massey, 1951), these results should be viewed with
some caution.

?

Discussion

There has been a growing interest in Appropriateness Measurement, both by
researchers and by testing practitioners. To date, however, there has been
little critical study of the various indices available. The results of the
research summarized here clearly indicate that there are important differences
in the properties of appropriateness indices. Figures ! through 3 show that
some indices are poorly standardized (e.g., IOV), and a "standardized" index
may not be well standardized (e.g., F1). Table 2 illustrates the problems
that are caused by poorly standardized indices.

A well-standardized index is not, however, necessarily a good
appropriateness index. The O/E and JK indices were shown to be reasonably
well standardized in Figures 1 through 3, but Tables 3 through 8 clearly show
them to be ineffective in detecting aberrant response patterns.

N Perhaps the most impor.ant finding of the simulation reported in this

G chapter is that z,, F2, and T2 provide nearly optimal rates of detection of

N some forms of aberrance but inadequate rates of detection of other forms of

:. aberrance. In particular, these three indices have near-optimal rates of

- detection when the spuriously high treatment is applied to very low ability

:. response vectors and when the spuriously low treatment is applied to very high

ability response vectors. Unfortunately, these indices have rates of
detection far below optimal when the spuriously high and low treatments are
applied to response vectors with nearly average ability values.
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Table 9.

Distributions of z,, F2, and TY

Means and Standard Deviations of Empirical

Severity of aberrance

Aberrance Ability 154 30%
manipulation range 2, F2 T4 Z, F2 T4
Spur. High 0-9% -2.32 1.28 1.56 -4.00 1.49 3.22
(1.13) (0.14) (0.94) (1.22) (0.15) (1.07)
Spur. High 10-30% -1.85 1.23 1.39  -3.32 1.43 3.04
(1.11) (0.14) (0.98) (1.19) (0.15) (1.10)
Spur. High 31-48% -1.38 1.19 1,22 -2.47 1.36  2.38
(1.03) (0.14) (1.02) (1.21) (0.17) (1.19)
Spur. Low 49-64% -1.02 1.13 0.65 -1.58 1.19 1.20
(1.03) (0.13) (0.99) (1.14) (0.14) (0.98)
Spur. Low 65-92% -1.85 1.23 1.17  -2.74 1.34  2.12
(1.16) (0.16) (1.11) (1.19) (0.15) (1.08)
Spur. Low 93-100% -3.01 1.37 1.78 -4.28 1.54  3.50
(1.30) (0.17) (1.14) (1.32) (0.17) (1.24)
Normals® 0-100%  0.09  0.99 -0.14
(0.97) (0.12) (0.86)
Note. Means and standard deviations are based on samples of N = 1000.

Standard deviations are in parentheses.

3To conserve space, results for the normal

columns for the 15% severity of aberrance.
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These results indicate that we need to devise new indices that are more
powerful than z,, F2, and T2 for examinees whose abilities are near average.
We expect that it may be necessary to construct two indices: one for
spuriously low response patterns and one for spuriously high response
patterns. This psychometric necessity would be quite useful for practitioners
because it would allow them to diagnose the cause of aberrance in addition to
detecting aberrant response patterns.

: I11. POLYCHOTOMOUS ANALYSIS OF THE ARITHMETIC REASONING TEST:
. AN APPLICATION OF MULTILINEAR FORMULA SCORE THEORY

Introduction

Multilinear formula score theory or multilinear formula scoring (MFS;

Levine, 1983, 1985a, 1985b) is a nonparametric IRT for which consistent and
asymptotically efficient estimators of ability densities, item characteristic
curves (ICCs), and option characteristic curves (OCCs) have been derived and
programmed. MFS provides a powerful new approach to substantive questions of
long standing. These questions include determining the shapes of ability

X distributions and the magnitudes of differences among ability distributions of

- various groups, determining the shapes of item characteristic curves for
unidimensional and multidimensional tests, identifying biased and other faulty
items, and assessing the extent to which two tests measure the same ability.

In the research reported this chapter, we used three-parameter logistic
N ICCs to model the way in which examinees respond to correct options of AR
N multiple-choice items and, simultaneously, we used MFS to model responses to
the incorrect options. Thus, we replaced the crude "histogram model" of
Chapter Il with a theory-based approach. Consequently, low rates of detecticn
of inappropriate response patterns cannot be attributed to an unsophisticated
analysis of the data.

Prior to determining rates of detection of spuriously high and low
response patterns, we examined MFS's ability to estimate option response
curves. The results of this analysis were assessed graphically and by
determining the increase in information about ability due to polychotomous
scoring of item responses. The term "information" is used in its statistical
sense to mean the expected squared derivative of the logarithm of the
¥ likelihood function. Since the asymptotic standard error of the maximum
- likelihood estimate of an ability © equals the square root of the reciprocal
- of the information function at 8, an increase in information due to
3 polychotomous scoring is readily translated into percent test length reduction
made possible by polychotomous scoring.

We also compared the dichotomous and polychotomous item response models'
potentials for supporting Appropriateness Measurement. Of course, the model-
based detectability of a particular type of aberrance depends upon the item
response model used to analyze the data; more specific (polychotomous) models
are expected to be rejected more frequently when fitted to aberrant response
patterns and thus provide superior appropriateness measurement. By combining
. the optimal appropriateness index results of Levine and Drasgow (1984, 1387)
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:ﬁ: with MFS's ability to accurately recover the option characteristic curves
K needed for polychotomous modeling, we determined whether polychotomous
v modeling was negligibly or markedly superior to dichotomous modeling in
N detecting test anomalies.
'§$ This chapter also contributes to formula score theory in that it provides
by a verification of MFS theoretical results with simulation data.
W
() -
&‘ - Review of Multilinear Formula Score Theory
Wi . . . S
o This section contains a review of MFS theory as it is used in this paper.
j}} The theory is more general than outlined here, but for the sake of clarity, we
ad will describe only the special case required for the present research.
AN
A Let u, denote the response to the ith item of an n item test scored u; =
{\i 1 if correct and u; = 0 if incorrect. The u; generate the elementary formula
3% scores, which can be enumerated as
]
o 1
)
"' E1v Bz) ’ E.n
> Sy 4830 -0 By g8y
-.':'
O
B .
>
Traditional formula scoring (Lord & Novick, 1968, Chapter 14) generally
PR uses only linear scores. When there is neither omitting nor polychotomous
:}: scoring, linear formula scores are formulas with a constant term plus a linear
-{f. combination of the binary item scores, Yy, Usy ey Yoo (When there is
LY
\3$- omitting and polychotomous scoring, a linear score is a constant plus a linear
M combination of binary variables indicating omitting and option choice.)
J
o Multilinear formula score theory generalizes traditional formula score
.;ﬁ theory by using quadratic scores (linear scores added to linear combinations
{:J of u s Yqlzy oo gﬂ_1gﬂ), cubic scores (quadratic scores plus linear
o combinations of products of item scores for three different items), and higher
o order scores. Most of the results in this chapter were obtained with fifth
el order scores. The new theory is called "multilinear" because frequent use is
j\j made of the fact that when all the scores except one are held constant, a
ftj "linear" score is obtained.
=2
N In this chapter, as in Chapter II, we assume that the regression of u. on
o ’ —1
- the latent trait O is a three-parameter logistic ogive. By local
N independence, the regressions of the elementary formula scores on the latent
N trait can then be written as
1
-;\ 1
o P (L), Py(L), , B (L)
' - E (E)P (t E](E)ES(E), cee Eﬂ_1 E)Eﬂ(g) i
v
<
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P (t)B (L) ... B (L),
where t is used to denote a specific value of 6.

n . . .
There are 2 regression functions listed above. More can be generated by
taking linear combinations of the elementary formula scores and then computing
their regressions on the latent trait. For example, the number-right score

X = u, + U, + ... + U
- -

has the regression

E(X | t) =

R

n M3

i

The collection of regression functions of all linear combinations of
elementary formula scores is called the canonical space (CS) of a test.

A major step in an MFS analysis of a test consists of finding a smaller
number of functions to represent the large number (in fact, an infinite
number) of functions in the canonical space. The smaller collection of
functions is called an orthonormal basis for the canonical space.

Selecting an orthonormal basis for the canonical space is analogous to
finding the principal components of a set of variables. In a principal
components analysis, the basic idea is to create a new set of variables, the
principal components, so that each of the original variables can be written as
a linear combination of the principal components plus a small residual. A
principal components analysis is valuable when there is a large number of
original variables and the first few principal components explain almost all
of their variance. In the same way, functions in the canonical space are
written as linear combinations of the orthonormal basis functions. For
example, the ICC for the ith item can be written

ah (L),

K
.E.I(E) = 2_:1

k

where K functions, denoted h,(t), ..., h(t), are used in the orthonormal
basis and the a, are the weights used in the linear combination. If X is

sufficiently large, this representation is exact. If only the first J
functions are used, instead of all K functions (where J is less than K), then
there is some error. However, the residual

J
B(t) - I (L)

K
ah (t) = I
K +

a h
1 J kK—k

1
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?“ﬂ will be small if the a are small for values of k larger than J. In fact, the
LA

i . . 2 2 2

residual |
. area under the squared S exactly LA TR ERAL Y0 SR ST s v
2;: In each MFS analysis, a parsimonious representation of one or another
}iﬂ collection of functions in the CS is important. MFS provides techniques that
1'; yield basis functions that give small values of a for large values of k, at
%
3 least for the collection of functions being analyzed. Most MFS analyses

- require six to eight basis functions for an adequate representation of the
oo functions being studied.

e\‘.-:

\:5 To recapitulate, the analysis begins by estimating ICCs from the
ﬂgﬁ dichotomously scored item responses. Widely available programs such as LOGIST

(Wood, Wingersky, & Lord, 1976) and BILOG (Mislevy & Bock, 1983) can be used

#7 to this end. The estimated ICCs and the assumption of local independence are

2 subsequently used to define the canonical space. Then a small number of

<4 orthonormal basis functions are selected so that the functions in the

)
-‘Eﬂ canonical space are well approximated by linear combinations of the
%

et orthonormal basis functions.
138"
3”ﬁ The next step of the MFS analysis is to determine weights for the
:\ﬁ' orthonormal basis functions so that option characteristic curves (OCCs) can be
.~: written as linear combinations of the ng. Since OCCs were not included in
)
,:J the set of functions used to define the canonical space, we must address both
’ the mathematical question of how best to approximate the OCCs by basis
functions and the substantive question of whether or not the basis functions
can adequately approximate OCCs. The OCC analysis proceeds item-by-item, with
5 : the weights for all the options (including omit as an option) to each item
a:; simultaneously estimated by the method of marginal maximum likelihood. The
jtj log likelihood that is maximized with respect to the weights is
ARN
J N
i L= logPlu, v. ), (17)
j o - 1 J 1J
o J=
e
"n
xf{ where uJ is a vector containing the dichotomously scored item responses of the
-." -
T jth examinee and lij indicates the particular option on item i selected by
fi;. examinee j. For a four-option multiple-choice item, !ij = 1 if option A is
V;b selected, ..., viJ = 4 if option D is selected, -and viJ = 5 if no response is
-~ - -
:*: made. Suppose all the items are recoded such that option A is always the
't% correct response. Then Equation 17 can be rewritten as
h"'-_- N
- L = L log P(u)) «
e J=1 J
'-.._' » 1
oY =
o Vi
e,
N
,
~
o
%
:'0 33
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where
n uL 1-ul
Plu, I £) = 1 B(t) Y1-p ()] (19)
J i=1 7 ot
J
Bl I Eowyy =0 = B ooy (e) (20)

and f(t) is the ability density.

Notice that Equation 19 is the likelihood

function for the three-parameter logistic model
4-20 and Hulin et al.'s (1983) Equation 2.6.2).

(i.e., Lord's (1980) Equation

It is the Qs in Equation 20

that are to be estimated. Actually, each option has its own set of J a

ks, but
to avoid notational complexity, we have not added another subscript to the

Q.kS.

It is important to observe that local independence is not used to derive
Equation 18 from Equation 17; only the definition of conditional probability
is used. Thus, even when skipping items or not reaching items (response "5")
fails to obey the assumption of local independence, an accurate estimate of

the conditional probability of non-response for examinees at each ability
level is obtained.

Quadratic programming methods are used to obtain maximum likelihood
estimates of orthonormal basis function weights for conditional option
characteristic curves (COCCs) in Equation 20. A COCC equals its associated
OCC divided by [1-21(9)]; hence, the COCCs for an item sum to 1 for all 8

values. The OCCs for an item, in contrast, sum to [1-gi(8)), which becomes

very small as gi(e) approaches 1. The weights a, for the COCCs are easier to

estimate than the weights for OCCs since the OCCs for easy items and for
rarely chosen options are close to 0, which causes the @, to become

indeterminant; COCCs are not usually close to 0. Because the OCC at 8 = t is
equal to the COCC multiplied by 1t - gi(g), the OCCs are available after the

COCCs have been obtained. The COCCs are intrinsically interesting as well as
mathematically tractable since their shapes can be used to study the
properties of effective distractors.

The quadratic programming methods used by Levine and Williams (1985) are
convenient because they allow plausible constraints to be placed on the COCCs.
One constraint is positivity: COCCs are not allowed to become negative. In
the present analyses all COCCs were required to equal or exceed .001. A
second constraint placed on COCCs is smoothness: The COCCs were not allowed
to oscillate widely. The smoothness constraint was implemented by restricting
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the third derivative of the COCCs to be less than .uuS. This condition can be
thought of as requiring each small piece of the graph of the COCC to have a
very accurate quadratic approximation. (A restriction on the second
derivative would force the COCC to be locally linear, and a first derivative
constraint would force the COCC to be locally constant.)

Estimation and Information

Data set. The data set used in our analyses was a spaced sample of 2,978
examinees taken from the National Opinion Research Center (NORC; Bock &
Mislevy, 1981) sample of American youths. These examinees answered the 30-
item ASVAB Arithmetic Reasoning (AR) subtest. Each item on this test has four
options.

ICC estimation. The first step in the MFS analysis was to estimate
ICCs from the dichotomously scored item responses. To this end, the item
responses of the examinees described above were scored dichotomously. All
nonanswered items were scored as incorrect (since we treated omits as a
separate--and incorrect--response option). Then version 2B of LOGIST (Wood
et al.,1976) was used to estimate item and ability parameters. Estimates of
item discrimination parameters ranged from about 0.5 to 2.0, and estimates of
item difficulties varied from about -3.0 to 1.4 (mean = .14, SD = .99),

Density estimation. The ability density f shown in Equation 18 was
estimated by the nonparametric method developed by Levine and Williams (1985).
The density was represented as a linear combination of basis functions, and
the weights were estimated by maximum likelihood. The weight vectors were
restricted to a convex set determined by hypotheses about the shape of the
unknown density. After experimenting with various shape hypotheses, the
following conditions were selected. The density was constrained to be
nonnegative; to have a nonnegative second derivative between -4.8 and -3.1; to
have a nonpositive second derivative for abilities between -.3 and 1.0; to be
monotonically increasing for abilities between -3.1 and -.3; and to be
monotonically decreasing for abilities between 1.0 and 3.5. These conditions
imply that the density will be unimodal between -3.1 and 3.5, that the mode
will occur between -.3 and 1.0, and that the density will either decrease to a
lower asymptote as ability decreases to -5 or will have a second mode in the
left tail if such is indicated by the data. [t was decided to allow a second
maximum at very low abilities because the data seemed substantially better fit
when bimodality was permitted. A substantive interpretation of bimodality is
noted below.

After some preliminary analyses, we decided to remove examinees who
answered less than half of the items. There were 87 such examinees, leaving
2,891 examinees for the density and COCC estimation.

Figure 4 shows the obtained density. It can be seen that the density is
roughly bell-shaped, with a mode near 0. The left tail turns up at low
abilities, suggesting a relatively large number of examinees with very low
abilities. One substantive interpretation of this fat left tail is that even
among examinees who answered more than half of the items there may have been
some who were poorly motivated and did not make a serious attempt to pass the
examination. In fact, examinees were paid to take the examination and
consequently some of them may not have been adequately motivated. The test
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_:{: information function at & = -5 is very low; consequently, pimodality cannot be
R establ ished unequivocally without much larger samples.
aa COCC estimation. Four COCCs were estimated for each item: the three
< incorrect response curves and an omit curve. Omits included both skipped
S responses and not-reached responses. The number of orthonormal basis
oo functions used in the analysis was 10. Thus, 30 weights (10 weights for each
91: of three COCCs) were estimated for each item. The weights for the fourth COCC
! . were a known linear combination of the weights for the other three (Levine,
1985b) .
o Appendix A contains plots of the COCCs estimated for all 30 AR items.
Nk The solid curves indicate the estimated COCCs. Each page in Appendix A
K~ contains the four COCCs for two items. For example, the first page of
NN Appendix A has the COCCs for item 1 plotted in the four panels to the left;

the four panels to the right contain COCCs for Item 2 of the AR subtest. For
each item, the top left panel contains the COCC for the first incorrect
option; the top right panel, the COCC for the second incorrect option; the
bottom left panel, the COCC for the third incorrect option; and the bottom
right panel, the omit COCC.

4§ g0 g
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The goodness-of-fit of the estimated COCCs can be evaluated by examining
> the vertical lines displayed in each panel. These lines were obtained by
;;i: computing three-parameter logistic ability estimates for all 11,914 examinees
- in the NORC data set, forming 25 ability strata on the basis of estimated
abilities by using the 4th, 8th, ..., 96th percentiles of the standard normal
3 distribution as cutting scores, and then computing, from among the subset of
examinees who answered the item incorrectly, the proportion of examinees
‘“ selecting each option. The centers of the vertical lines correspond to the
observed proportions and they are plotted above the category medians (the 2nd,
6th, ..., 98th percentiles of the standard normal distribution). The vertical
lines represent approximate 95% confidence intervals for the observed
proportions (t two standard errors, where the observed proportion is used to
compute the standard error). Observed proportions of 0 and 1 are plotted as
plus signs and are offset slightly from their true locations so that they will
be visible.
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The AR items seem to be more-or-less ordered by difficulty.

Consequently, the 95% confidence intervals for the first few items in Appendix

A are very wide because these items are easy and so few examinees chose

incorrect options. Confidence intervals for later items are much narrower and

provide a severe test for COCC estimates. Item 27, for example, shows that

the COCC estimates provide a very good description of option choice. Notice

that the COCC for the omit category lies below most observed proportions.

This occurs because examinees with high omitting rates were excluded from the
: sample used to estimate COCCs, but were included in the total sample used to

compute the proportions displayed in Appendix A.
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COCC estimation verification. The figures presented in Appendix A show
that MFS estimates of COCCs closely follow the actual patterns of item
responses. It is difficult, however, to understand the accuracy of COCC
estimates from these figures because the true COCCs are not known. To gain
further insights into the properties of MFS estimates of COCCs, a simulation
data set of 3000 response patterns was generated. Simulated apbilities were
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sampled from the standard normal distribution, probabilities of correct and
incorrect responses were determined from the ICCs obtained by the LOGIST run
described previously, and probabilities of option selections (for responses
simulated to be incorrect) were computed using the MFS-estimated COCCs.

COCCs were re-estimated from the simulation data set. The true ability
density (the standard normal) was used in Equation 18, and the true ICC values
were used to compute probabilities of correct and incorrect responses. The
true ability density and ICC values were used because we wanted to determine 1
the errors of COCC estimates in a way that was not confounded with
inaccuracies 1n density estimates and ICC estimates.

The results of the simulation study are shown 1n Appendix B, which
presents the re-estimated COCCs for all 30 items. Heavy lines indicate tne
re-estimated COCCs and thin lines indicate the true COCCs. Observed
proportions and their approximate 95% confidence intervals are shown for the
simulation sample of N = 3,000. The observed proportions were not plotted it
five or fewer incorrect responses were made in an ability stratum.

[tem 2 shows estimated COCCs that are very close to the true COCCs for
all ability levels. This is remarkable because there were almost no lncorrect
responses made by simulated examinees with above-average ability. Item 3
shows that we cannot always expect to have well-estimated COCCs when there are
no data available: Large diffences between true and estimated COCCs occur at
high ability levels. The COCCs were, however, accurately estimated in ability
ranges for which there were more than a handful of incorrect responses.

From an inspection of the plots in Appendix B, it seems evident that COCC
values were accurately estimated when there were six or more incorrect
responses in adjacent ability strata. Sometimes COCC values were well-
estimated when fewer incorrect responses were available, but this seemed to be
a matter of chance. Notice, also, that COCCs for the omit option were not
underestimated in this analysis as they were in the analysis of the real AR
data. In this analysis, all response vectors were used; there was no
restriction on omitting as in the previous analvsis.

Information functions. Information functions for the dichotomous and
polychotomous modelings of the AR test are shown in Figure 5. An expression
for the information function of the three-parameter logistic model is

(e (2)1° 19 (2)12
i = 1
Information at t L TS) + L q (0) (21)
i -i= i =i
where Q. = 1 - P, and 2{ and Q; are the first derivatives of P, and
Qi' The information function of the polychotomous model 1is
(21(t))° SR (0)f |
Information at t = L ————— « L [ - — (22)
=Y P (L) - T, Po(t)
i -1 = 1 j=2 —1j =
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where 511 is the OCC for option } on item i and Eij is its first
derivative. The correct option makes the same contribution to information for
both the dichotomous and polychotomous scorings; namely, the first term on the
right sides of Equations 21 and 22. Thus, any differences in information are
entirely due to the treatment of incorrect responses. Although it is not
obvious from Equations 21 and 22, it can be shown that the information
function for the polychotomous model equals or exceeds the three-parameter
logistic model's information function. Thus, any increase in information is
entirely due to polychotomous scoring.

Figure 5 shows that there are moderate gains in information due to
polychotomous scoring of the AR items for low to moderately high abilities.
These gains are equivalent to adding about 5 or 6 items to the subtest.
Little or no information is gained for high ability examinees. This latter
finding is not surprising because high ability examinees are expected to
answer nearly all the items correctly.

[t should be noted that the AR items were not written with polychotomous
scoring in mind, and so the gains in information shown in Figure 5 are more-
or-less fortuitous. Larger gains might be realized if item writers knew the

attributes of incorrect options that typically lead to substantial increases
in information,

Appropriateness Measurement for the AR Subtest

Purpose

This section compares the effectivenesses of dichotomous and
polychotomous models for detecting aberrant responses patterns. By comparing
detection rates of optimal indices, it is possible to compare the maximum
detection rates possible for a given form of aberrance. As in the previous
section, the dichotomous model is a submodel of the polychotomous model;
hence, any increase in detection rates is due to modeling incorrect responses.

Several practical indices were also evaluated. Most of these indices are
computed from the dichotomously scored item responses. One index, however, is
the natural extension of a dichotomous model index to the polychotomous case.
Detection rates for the practical indices will indicate (a) which are
relatively more powerful and less powerful, and (b) the extent to which the
maximum detection rates are attained.

Overview

The ICCs and OCCs estimated for the AR subtest from the samplie of
N = 2,891 were used as the "true'" item parameters in a simulation study.
Initially, a sampie of N = 3,000 simulated response patterns was created and
used as a test norming sample. This data set was used to determine the item
and test statistics required to compute all but two (zp and DOFk) of the

practical appropriateness indices listed 1n the next section. Then a nocrmal
sample (appropriate responding) of N = 4,000 response vectors was created. In
addition, 16 aberrant samples of N = 2,000 were generated to simulate several
forms of aberrance. Optimal indices and all the practical 1ndices were then
computed for the normal sampie and aberrant sampies. Rates of detection of
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Information functions for dichotomous and polychotomous
scorings of the Aritmmetic Reasoning subtest.




‘.‘ h - - -
WIASERIIS

P
v .

e

A A R
AP AR A

hadi oAl Aa- Aot gad Bal dald D it ol L i ol adub bl St Siab s i el el b Sall R oA i A

aberrant response vectors at various false alarm rates were determined for
each appropriateness index and each form of aberrance.

Appropriateness Indices

This section lists the appropriateness indices that are evaluated.
Technical details about the indices are given in Chapter 2.

Polychotomous model optimal index (LRp). Denote the polychotomously

scored response vector by v. The polychotomous model optimal index studied
here is

LR = P (v)

p  —Aberrant (v) -,

/ ENormal
where the probabilities are computed using three-parameter logistic ICCs to
determine conditional probabilities of correct responses and MFS OCCs to
determine conditional probabilities of incorrect responses.

Dichotomous model optimal index (LR,). This index is identical to LR

except that only the pattern of correct and incorrect responses u is used in
its calculation. This class of indices, therefore, provides the highest rate
of detection when the choice of incorrect option is ignored.

Dichotomous model optimal index computed using estimated item parameters
(LR3). For optimal indices to be truly optimal, they must be computed using

item parameters -- not item parameter estimates. In previous work (Levine &
Drasgow, 1982), we found that the values of some appropriateness indices were
almost unaffected when item parameter estimates were used in place of item
parameters. In the present research, we also computed optimal indices for the
three-parameter logistic model using estimated item parameters.

Dichotomous and polychotomous model standardized ¢, (z, and zp). In
Chapter II, z, was discussed; zp is the generalization of z, to the case of a

polychotomous analysis of the item responses.

Fit statistics (F1 and F2). (Discussed in Chapter II.)

Caution indices (S, T2, and TU). (Discussed in Chapter I[I.)

[tem-option variance (IOV). (Discussed in Chapter II.)

Likelihood function curvature statistics (JK and O/E). (Discussed in
Chapter II.)

Deliberate failure key (DFK). The final index evaluated is the
DFK developed by the Navy Personnel Research and Development Center (Swanson & Foley,
1982) to detect individuals who are deliberately attempting to obtain low
scores. Although DFK was developed for the AFQT composite, we used the key
for the AR subtest only.

o L RN T T T e

[P Calls
PRI A SN I PE PN

- E R
L Sl Pyl ~ N
[/ w g W

"f{'.‘l-
A
o

'1‘.\ W

14
L




L4

r
ok

L aBEY e Y SIS A

42
B S Y e Ay -
CaORIP R PN u'.*.- CA AN e e Y e e Y, R T -
mm.‘&;’lA&‘nﬁ-‘"&;’P -\;‘i't‘:"' o .\"'\- “'4-_:,«}‘.‘;'.. -f'\-‘. R -_.."_.. Tttt ~‘,~. .t .. . R
Al ana ot V.00 0 P S Y NN --'..A.L.r\.‘_),":n-,‘;\,'-l"- L "o Lol - [l g

Method

Data Sets. A test norming sample of 3,000 response vectors was created
by sampling 3,000 numbers (8s} from the normal (0,1) distribution truncated to
the [-5.0, 3.5] interval. A normal sample of 4,000 response vectors was also
generated in this way. Then 2,000 aberrant response vectors were created in
each of 16 conditions. These conditions resulted from varying three factors:
the type of aberrance (spuriously high; spuriously low), the severity of
aberrance (mild; moderate), and the distribution from which simulated
abilities were sampled.

Eight of the aberrant samples contained spuriously high response vectors,
and the remaining eight samples contained spuriously low response vectors.
Spuriously high response patterns were created by first generating normal
response vectors (using the AR three-parameter logistic ICCs to determine the
probabilities of correct responses, and the AR COCCs to determine the
probabilities of incorrect option selection) and then replacing either 17%
(mild aberrance) or 33% (moderate aberrance) of the simulated responses
(randomly sampled without replacement) with correct responses. Spuriously low
response patterns were also created by first generating normal response
vectors. Then 17% or 33% of the items were randomly selected without
replacement and the responses to these items replaced with random responses
(i.e., a response was replaced by option A with probability .25, by option B
with probability .25, ..., and by option D with probability .25).

The third variable manipulated was the ability level of the aberrant
sample. Abilities for the spuriously high samples were sampled from four
parts of the normal (0,!) distribution truncated to [-5.0, 3.5]): very low
(0th through 9th percentiles), low {10th through 30th percentiles), low
average {(31st through U8th percentiles), and high average (49th to 6ith
percentiles). In all cases, percentiles were determined after the truncation.
Abilities were sampled from four average to high ability strata for the
spuriously low samples: low average (31st to 48th percentiles), high average
(49th through 64th percentiles), high (65th through 92nd percentiles), and
very high (393rd percentile and above).

Analysis. The analysis followed the procedure described in Chapter II.
All the item and test statistics required to compute the practical
appropriateness indices were computed using the test norming sample. LOGIST
(Wood et al., 1976) was used to estimate three-parameter logistic item
parameters and a Fortran program was written to compute the other quantities
required. :

The practical appropriateness indices and LR, were then computed for
the response vectors in the normal and aberrant samples. Optimal indices were
also computed for the normal sample for four aberrant conditions: 17%
spuriously high, 33% spuriously high, 7% spuriously low, and 33% spuriously
low. The 17% spuriously high optimal index was computed for the four samples
with this form of aberrance, the 33% spuriously high optimal index was
computed for the four samples with this form of aberrance, etc. The ICCs and
COCCs used to generated the data were used to compute LRp and LR,.
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T Results

The results for the spuriously high conditions are given in Tables 10
. through 13. The results for the lowest ability group are shown in Table 10.
53 In this table, it is evident that cheating on five randomly selected items was
: not very detectable: At a 2% false alarm rate, only 28% of the simulated

";Z cheaters were detected by the optimal LRp index. The best of the practical
T

L5e indices, z, and F2, detected 18% and 20%, respectively. (The higher detection

’ rate of IOV resulted because this index is poorly standardized; see Chapter

Dot = II.) Cheating on 10 items (the 33% condition) was reasonably detectakble. For
a y

:§ example, LRp detected 61% and LR, detected 54% at a 2% false alarm rate. At
‘:3; this false alarm rate, z,, F2, and T4 detected 44%, 41%, and 50%,

ﬁﬁf: respectively.

The detection rates of the optimal indices showed a relatively small

:};: decline from Table 10 to Table 11. At a 2% false alarm rate, LRp, for

tﬂ: example, declined from 28% to 26% for the 17% spuriously high treatment and
AN from 61% to 53% for the 33% treatment. Most of the practical indices showed
e larger declines in detection rates. This trend continues in Table 12.
;’; Finally, in Table 13, it is evident that simulated cheating on the AR

fq subtest was almost undetectable for high average examinees. In contrast,

N Drasgow et al., (1985) found moderate detection rates for simulated cheaters
;Q with comparable abilities for the SAT-V. A significant difference between the
b two tests lies in the frequency (and relative frequency) of difficult (9i »
K" 1.0), discriminating (a > 1.0) items with low lower asymptotes (¢ < .10).

-l Seventeen of the 85 SAT-V items satisfied these three conditions. In

f%: contrast, none of the 30 AR items met these conditions and only three items
LT N

it had Qi > 1.0. In sum, high average examinees had a reasonably gocd chance of
b

J responding correctly to each AR item; so,correct responses obtained by

I cheating were not clearly aberrant.
®, ..".-

::? The results for the spuriously low samples are given in Tables 14 through
g 17. 1In Table 14, it is evident that 33% spuriously low responding by

Yo simulated low average examinees was moderately detectable by LRp (a 30%
e detection rate with 2% false alarms) but not by any of the other
S appropriateness indices. Higher detection rates were obtained for simulated
:;. high average examinees {shown in Table 15). Again, LRp performed
N ,

x:- substantially better than any other index. High rates of detection of

Vﬂ simulated high and very high examinees are shown in Tables 16 and 17. LRp was
o clearly the best index, with detection rates of 72% and 81% for a 2% false
';:, alarm rate in the 33% spuriously low treatment.
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Table 10. Selected ROC Points for Spuriously High
Response Patterns Generated from the 0-9% Ability Range

False Proportion detected by
alarm
rate LRp LR, LR} zp Z, F1 F2 S T2 T4 IOV JK O/E DFK

17% Spuriously High Treatment
.00 o4 04 01 0O 03 00 01 00 00 O1 10 00 00 00

. 005 " 12 " 03 06 00 08 00 O4 o4 6 02 02 00
.01 16 19 17 05 12 02 13 03 07 06 23 03 o4 03
.02 28 29 26 08 18 o4 20 12 13 1 37 06 07 03
.03 3633 30 1125 07T 24 18 18 W45 09 09 12
.0y 38 37 34 13 29 10 28 24 22 18 52 13 12 12
.05 43 40 38 5 33 15 32 27 26 22 97 15 14 12
.07 L8 us 4y 19 41 24 40 37 32 26 64 22 19 12
.10 52 50 49 26 51 36 50 49 42 33 71 29 25 28

33% Spuriously High Treatment

.001 23 24 17 02 10 00 o4 00
.005 bo 33 27 07 25 00 15 00
.01 s U5 43 12 30 O 27 06
.02 61 54 52 17 44 05 W 17
.03 67 59 58 22 50 16 47 24
.04 71 b4 63 25 56 23 55 32
.05 72 67 66 31 62 30 59 37
.07 77 M 76 37T 66 42 68 47
.10 81 75 75 46 75 57 76 60

12 27 00 00 00
27 37 00 O4 00
34 49 00 09 O
46 66 01 17T 01
73 02 24 01
57 80 03 37 01
61 83 03 37 01
67 84 07 47 O
7392 19 57 17

o = joy O O WD W0 O O
2RISIFIBIEIR & &
un
n




3
At

N

N
;:E Table 11. Selected ROC Points for Spuriously High
N Response Patterns Generated from the 10-30% Ability Range
0K

- False Proportion detected by
:&: alarm .
rate LR LR, LR} 'z, 'z, FI F2 S T2 T4 IOV JK O/E DFK
-

N 17% Spuriously High Treatment
;;S .001 02 01 00 00 02 00 00 00 00 OV O4 00 00 00
o .005 09 07 07 01 05 00 03 00 05 O4 07 00 O 00
.01 1 14 14 o4 09 00 06 00 O7 07 13 00 03 00
X 02 26 25 22 06 14 01 11 04 14 12 24 01 05 00
_1‘;' .03 31 29 29 08 19 03 14 06 20 16 31 02 07 03
04 3% 33 33 10 23 06 18 10 24 20 39 02 10 03
. .05 40 36 37 12 27 09 21 12 27 23 43 03 14 03
, .07 46 43 43 16 3 1 27 18 33 28 51 06 20 03
{:j .10 52 50 51 23 43 24 37 28 42 3 61 W 27 12
o 33% Spuriously High Treatment
. .001 16 16 13 00 O4 00 00 00 03 09 10 00 O1 00
.- .005 31 27 23 03 14 00 07T 00 20 23 17 00 06 00
o .01 37 4% 39 05 20 00 15 01 28 29 26 00 10 00
o .02 53 50 50 08 30 03 27 06 42 41 4O 00 20 00
J .03 61 56 57 12 37 08 34 10 51 47 47T 00 27 O
= 04 65 63 62 W 42 12 4 16 58 53 56 00 34 Of
7, .05 68 66 65 19 49 17 46 20 62 58 61 00 40 O
o 07 73 70 70 25 54 28 56 29 67 63 68 05 51 O

_ .10 7 T4 75 33 64 44 67 41 4 70 75 18 60 06
2
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Table 12. Selected ROC Points for Spuriously High

"','-‘. o

Response Patterns Generated from the 31-48% Ability Range

1; False Proportion detected by
; alarm
o rate LR LR, LR} z oz, F1 F2 S T2 TH 1OV JK O/E DK .
-': 17% Spuriously High Treatment
33 .001 00 00 00 00 01 00 00 00 00 Q1 00 00 00 00
R 005 03 03 O4 00 03 00 O 00 Q4 Q4 O 00 00 00
-~ .01 06 07 08 02 06 00 02 00 06 06 o4 00 01 00
% .02 5 15 14 03 09 00 05 00 12 12 08 00 05 00
1N .03 20 19 19 05 W 03 07 02 17 15 12 00 08 00
:ﬁ .04 24 23 24 06 17 06 10 03 21 18 17 00 10 00
' .05 29 26 28 07 20 07 13 O4 23 22 20 00 13 00
- .07 3 34 35 10 25 12 18 07 29 26 26 01 20 00
ko .10 43 42 43 15 33 18 26 12 36 32 35 07 29 06
2 33% Spuriously High Treatment
.001 06 10 07 ©00 02 00 00 00 02 06 ©O1 00 O 00

S .005 17 16 14 01 07 00 03 00 12 16 03 00 05 00
- .01 22 27 26 02 10 00 08 00 18 22 05 00 08 00
& .02 39 36 37 o4 17 o4 16 02 27 32 1 00 1T 00

: .03 48 43 4 05 22 08 21 05 36 38 15 00 23 00
o .0l 53 51 49 07 27 12 27 07 41 43 16 00 29 00
;E: .05 56 55 54 09 33 16 31 09 45 47 21 00 34 00
;:E .07 63 61 61 13 37 23 4O 14 50 53 25 07 44 00
Y .10 71 67 68 20 46 36 51 22 59 60 31 19 53 03
£
)
R
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o

b

y
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;;: Table 13. Selected ROC Points for Spuriously High
?;f Response Patterns Generated from the U9-64% Ability Range
o False Proportion detected by
?'..-: alarm
s rate LR LR, LR z, z, F1 F2 S T2 T IOV JK O/E DRk
N 17% Spuriously High Treatment
= .001 00 00 00 00 00 00 00 00 00 00 00 00 00 00
(2> .005 00 00 Ot 00 01 00 00 00 02 03 00 00 00 00
o .01 02 01 03 00 03 01 01 00 O4 O4 00 00 00 00
o .02 07 06 07 01 05 01 03 00 O7 ©08 O' 00 00 00
¥,
X .03 1" 09 11 01 08 O4 O4 00 11 11 02 00 06 00
)
oo .04 W 13 W 02 10 06 07 01 14 14 03 00 09 00
;3* .05 18 16 17 03 13 08 08 01 16 17 O4 00 12 00
B .07 25 23 24 06 17 11 13 03 20 21 07 OV 17T 00
.10 33 30 3 09 23 16 19 05 26 27 1t 07 24 03
33% Spuriously High Treatment
.001 01 02 01 ©00 00 00 00 00 00 02 00 00 00 00
o .005 05 o4 03 00 03 O01 Ot 00 05 07 00 00 01 00
o .01 08 10 11 00 O4 02 O4 00 O7 10 00 00 02 00
e .02 19 16 18 01 07 07 08 01 12 17 01 00 06 00
e .03 28 23 25 02 10 11 11 02 16 20 01 00 08 00
P .04 3B 32 32 03 12 4 15 03 20 25 03 00 11 00
o .05 37 37 3 05 16 17 17 o4 23 29 O4 00 14 00
) .07 48 45 4 08 19 23 23 07 28 35 05 03 20 00
.-_"
oy .10 60 55 56 13 25 31 31 12 35 40 10 11 28 01
R;E
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Table 14. Selected ROC Points for Spuriously Low

Response Patterns Generated from the 31-48% Ability Range

False Proportion detected by
alarm
rate LRp LR, LR; zp z, F1 F2 S T2 T4 IOV JK O/E DFX

17% Spuriously Low Treatment
.001 01 00 00
.005 05 01 01
.01 09 03 03
.02 15 06 07
.03 18 10 12
.04 21 14 15
.05 24 17 18

00 00 00 O00 00 O00 OO O00 00 00
02 00 01 00 02 02 O 00 00 00
o4 01 02 00 03 03 03 O1 01 01
02 04 00 06 07 06 01 02 01
10 o4 05 01 09 09 08 02 03 06
13 07 07 03 12 12 12 03 05 06
15 10 09 o 14 14 W 05 07 06

GlElRIRIFIR 8
3

.07 29 2 23 21 19 17 12 07 18 17 20 07 10 06
.10 35 28 28 27 26 25 17 11 23 22 26 12 W 20
33% Spuriously Low Treatment

.001 07 o0t 01 01 02 00 00 00 00 01 02 00 00 00
.005 14 03 o4 07 O5 00 O4 O00 O3 O4 o4 o01v O O
.01 22 08 09 12 10 02 07 ©00 05 07T oO7 02 O1 oO1
.02 30 14 16 18 15 05 11 03 09 " 13 04 03 O
.03 36 20 22 23 20 09 13 06 14 15 18 07 04 16
.04 41 24 26 27 23 13 17 10 16 19 23 10 06 16
.05 45 29 30 31 26 17 19 N 19 22 27 13 07 16
.07 51 36 37 36 32 27 24 17 2 27 32 17 1 16
.10 59 44 44 44 38 36 31 25 29 33 41 24 16 37
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Table 15. Selected ROC Points for Spuriocusly Low

zf, Response Patterns Generated from the 49-64% Ability Range
‘ y False Proportion detected by
‘:j alarm
I; rate (R, LR, LRy 2z 'z, FI F2 S T2 T4 IOV JK O/E DFK
_}Q 17% Spuriously Low Treatment
] .001 07 00 00 00 01 00 00 00 00 01 00 00 00 00
e .005 16 O4 O4 O4 03 00 00 00 03 03 01 00 00 00
' .01 20 07 07 07 06 00 02 00 05 05 02 00 01 00
™) .02 26 1% 13 11 09 03 04 00 10 08 06 00 02 00
_ '3‘ .03 28 19 18 14 14 08 06 01 14 11 09 00 03 O
N o 31 24 21 16 16 13 08 02 17 14 13 00 05 Ok
< .05 35 27 24 20 19 17 09 02 21 17 15 01 07 O4
™. .07 39 31 29 25 24 24 13 05 25 21 20 01 13 OM
= .10 usy 38 3% 33 32 30 20 19 31 27 28 06 18 17
EI 33% Spuriously Low Treatment

. .00 6 02 04 O1 O4 00 00 00 O1 03 02 00 00 00
N .005 25 07 11 12 09 00 03 00 08 08 05 00 00 00
o .01 33 13 20 18 15 01 07 00 12 11 08 00 00 O4
v .02 B0 19 27 26 21 06 11 02 19 18 17 01 00 O4
W .03 56 20 3W 32 27 14 4 05 24 22 23 02 00 14

" .04 50 29 38 36 30 22 18 08 27 27 29 03 07 14
o .05 53 34 42 39 33 28 20 10 30 30 33 03 09 14
}‘:: .07 5 40 47 46 39 38 26 16 34 35 38 05 15 14
" .10 66 46 53 55 46 44 3w 23 43 42 47 12 21 3y
#

2

v

1) |
(o ‘
%E

&

e

49

PRATIEEPSU ST Vol Nt S

.J..‘_\_. 5 < RS e
A I TN AN LN IR




Table 16. Selected ROC Points for Spuriously Low
Response Patterns Generated from the 65-92% Ability Range

o False Proportion detected by

fj alarm

}: rate LRp LR, LR} zp Z, F1 F2 S T2 T4 IOV JK O0/E DFK #
K »

he 17% Spuriously Low Treatment

N .001 20 05 04 00 02 00 00 00 O 02 00 00 00 00
005 30 17 16 05 07 03 02 00 08 07 00 00 00 00
.01 3% 24 22 08 13 08 06 01 12 10 02 00 00 00

o .02 41 30 30 14 20 20 12 04 19 17 O4 00 00 0O
- .03 43 3% 33 19 26 28 15 06 24 20 05 00 06 O
< .ol 46 38 36 23 28 32 20 10 28 24 08 00 09 02
¢ .05 49 40 39 26 31 36 22 12 31 27 10 00 12 02
= .07 52 43 43 33 37 41 28 17 35 32 1 03 18 02
x .10 56 49 49 43 45 46 38 22 43 38 20 10 24 09
:?t 33% Spuriously Low Treatment
.001 38 14 17 03 15 00 01 00 08 12 06 00 00 00
R .005 48 24 28 20 24 02 11 00 26 25 10 0G 00 00
.01 55 34 38 29 36 08 19 O4 33 31 15 00 08 02
e .02 62 41 4y 38 45 24 30 11 43 42 27 00 17 02
- .03 65 47 50 44 51 36 37 15 51 46 33 00 22 09
.‘ .04 68 50 52 49 55 43 43 19 55 51 40 00 28 09
- .05 71 54 55 53 59 49 46 23 58 54 43 00 32 09
, .07 7% 54 60 61 64 57 53 31 62 59 50 07 42 09
L .10 78 64 65 69 71 64 61 41 69 65 58 22 50 27
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r:' Table 17. Selected ROC Points for Spuriously Low
r{: Response Patterns Generated from the 93-100% Ability Range
&
False Proportion detected by
alarm
rate LRp LR, LRj Zp 2, F1 F2 S T2 T4 Iov JK O/E DFK

17% Spuriously Low Treatment

.001 4s 22 22 o4 o4 1 01 00 02 03 00 00 00 00
.005 55 y2 Lo 13 iR 27 09 09 15 T 00 00 00 00
.01 60 49 u6 18 20 43 18 22 21 18 00 00 00 00
.02 67 54 53 26 29 55 30 35 33 29 01 00 00 00
.03 69 58 56 32 37 60 35 41 41 35 01 00 00 00
.04 A 60 58 37 41 63 4 48 47 W 02 00 o1 00
.05 72 62 60 40 46 66 45 51 51 47 03 00 01 00
.07 74 65 62 48 5S4 71 53 58 56 53 O4 02 03 00
.10 77 68 66 58 63 75 63 65 64 62 06 11 06 OM
33% Spuriously Low Treatment

.001 64 42 40 04 32 02 06 00 20 33 09 ©00 02 00
.005 72 53 51 27 49 17 32 08 51 52 13 00 08 OO0
.01 76 61 59 39 62 36 Lg 21 59 60 20 00 13 00
.02 81 67 64 51 71 59 61 39 69 70 30 00 22 00
.03 83 70 68 59 77 69 67 48 74 74 35 00 27 05
.04 8 72 70 64 79 T4 72 55 80 78 4O 00 33 05
.05 86 T4 73 68 8 78 75 59 83 81 44 00 38 05
.07 87 71 15 75 86 84 80 68 86 84 51 21 u8 05

.10 90 79 77 82 90 87 8 76 90 87 58 41 57 21
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Khe Discussion
\ In this chapter, we described Levine's (1985a, 1985b) theory of
o psychological measurement. It was used to estimate COCCs for a sample of
.:S 2,891 examinees who responded to the AR subtest. Good to excellent fits were
.\: obtained when the estimated COCCs were compared to empirical proportions
r computed from the responses of a larger sample of 11,314 examinees. A
’ simulation data set was also used to investigate COCC estimates. Very
o, accurate estimates were obtained for ability ranges having sufficient numbers
:? of examinees who responded incorrectly.
2]
\:; The test information function of the polychotomous model was found to be
e moderately larger than the three-parameter logistic information function for
: low to moderately high ability levels. Since there is information in
. incorrect options, it seems prudent to use it if items are expensive to write,
A0 if the number of items that can be administered is severely limited, or if
‘\j very accurate ability estimates are required. Furthermore, we can now study
e systematically the differences between items with informative incorrect
x; options and items with essentially noninformative incorrect options. [t may
Y be possible to identify different characteristics of these two types of items,
A Then item writers could explicitly attempt to write items with highly
,{} informative incorrect options and thus increase the information about ability
.;5 provided by tests.
B .'.
2, An Appropriateness Measurement simulation study was also conducted to
v compare the polychotomous model with a dichotomous submodel; namely, the
three-parameter logistic. Several important results were obtained. First,
A for the spuriously low treatment that simulates atypical educations,
- misgridding answers to a portion of the test, unusual creativity, etc., we
,;x found that optimal three-parameter logistic appropriateness indices fell far
N short of their optimal polychotomous model counterparts. At some false alarm
%0 rates, the rates of detection of aberrant response vectors were more than 100%
J higher for the polychotomous optimal indices. Thus, Appropriateness
;;y Measurement constitutes one important practical testing problem where
;j substantial gains are made by the use of a polychotomous item response model.
Jj The results of the Appropriateness Measurement simulation study also
" showed that the practical polychotomous model index zp was not a particularly
- good index: Its detection rates were not close to optimal for either
"L spuriously high or spuriously low treatments. This result, in conjunction

with the results described previously, points to the need to devise better

A polychotomous appropriateness indices that can be used in practical
e situations.

*; A third result obtained in the Appropriateness Measurement research

e reported in this chapter was that the z,, F2, and T4 indices effectively

- detected aberrance in relation to three-parameter logistic optimal indices

.jx (but not polychotomous model optimal indices). Therefore, if one is satisfied
f: with dichotomous scoring of item responses for some particular application,

L then z,, F2, and T4 can be used with confidence to detect inappropriate test
e scores.
o
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In sum, COCC estimates provide opportunities to improve testing in a
variety of ways: abllity estimation, the theory and practice of item writing,
and Appropriateness Measurement. Appiications in areas such as the evaluation
of item and test bias and adaptive testing may also be fruitful.

Consequently, we conclude that there is information in incorrect responses and
that polychotomous 1tem response models can make important contributions to
psychological testing.

Iv. MULTI-TEST EXTENSIONS OF PRACTICAL AND
OPTIMAL APPROPRIATENESS INDICES

Introduction

This chapter describes methods for efficient detection of inappropriate
test scores in situations where examinees complete several short tests. In
particular, information about aberrance is pooled across tests that measure
distinct traits. This approach seems valuable for test batteries such as the
ASVAB, which contains a number of short power subtests.

Model-based approaches to the detection of aberrant response patterns
have generally assumed that the latent trait space is unidimensional. For
example, the three-parameter logistic model has been used by Levine and his
colleagues (Drasgow & Levine, 1986; Drasgow et al., 1985; Levine & Drasgow,
1982; Levine & Rubin, 1979). Tatsuoka (Harnisch & Tatsuoka, 1983; Tatsuoka,
1984) has used the two- and three-parameter logistic models for her extended
caution indices. Wright (1977) has tried to identify individuals who do not
conform to another unidimensional model; namely, the Rasch model.

In Chapter II, we found that appropriateness indices can provide very
high detection rates for long unidimensional tests. Detecting aberrant
response patterns on shorter tests was shown to be a much more difficult task
in Chapter III. What can be done to increase detection rates on short tests?
The solution does not lie in better appropriateness indices for unidimensional
tests, because no index computed from the item responses can provide higher
detection rates than the optimal index used in Chapter III. This fact led us
to devise methods for pooling information about aberrance across several
short, unidimensional tests.

Another approach to detecting aberrant response patterns uses external
information to predict test scores. The standardized residual (i.e., the
standardized error of prediction) can then be used as an appropriateness
index, For example, test scores not included in a selection composite can be
used to predict the composite score. Persons who cheated on the tests
included in the composite, but not on the other tests, would be expected to
have large positive standardized residuals and therefore be identifiable.
Similarly, scores tfrom cperational sections of a test can be used to predict
scores on an experimental section in order to identify examinees who do not
make a serious effort on the experimental section. These examinees would be
expected to have large negative standardized residuals.
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Little is known about the efficacy of the standardized residual approach
to the identification of aberrant response patterns. In the second study
described in this chapter, we evaluated this approach and compared it to
model-based methods of Appropriateness Measurement.

The next section of this chapter describes multi-test extensions of six
practical appropriateness indices, and then presents one means of
approximating muiti-test optimal indices. The approximation and multi-test
practical indices were evaluated in two studies. The first used simulated
ASVAB data so that all assumptions about the item responses (local
independence, three-parameter logistic item characteristic curves, etc.) were
correct. In the second study, an actual ASVAB data set was used so that the
performances of the appropriateness indices could be evaluated under realistic
conditions.

Multi-Test Extensions of Practical Appropriateness Indices

The basic assumption for our multi-test indices is that the test battery

consists of several unidimensional tests. Let UJ = (g1,..., gﬂ ) denote the
random vector of item responses for test j, j=1, ..., m, let uJ z (31, .
u ) denote a value of the random vector, and let 0 = (61, ceey em) denote a
J

vector containing the abilities measured by each of the m tests. Then

m

2(01, . Umfe) = n E(UJJO)

j=1

m

J=1 3

where both equalities result from local independence. This shows that the
random vectors U, are independent after conditioning on the individual

J

abilities 8, . Consequently,

J

m
B(£,(U), .., £(U)IO) = JE1 ENCRICAN (23)

for arbitrary functions f, (see Chung, 1974, p. 51), which means that

J

functions of the item response are also conditionally independent.

Standardized 2, . The significance of Equation 23 for developing multi-
test extensions of appropriateness indices will be illustrated with
the standardized 2, indices. Let

L, = log P(U, = u U, = u,19

7T Um
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Then

m )
E(e,) = ¢ E[249))

J=1

and by Equation 23
m ()

Var(g,) = L Var[ﬁoj ]

J=1

Hence, &, can be standardized by

z - _En_:_ELE%%a . (24)
[Var(2,)]
Expressions for E[Qsj)] and Var[QﬁJ)] were given by Drasgow et al. (1985) for

dichotomously and polychotomously scored item responses. We shall denote the
standardized %, index by z, when the three-parameter logistic model is used.
The index is denoted zp when it is based on a polychotomous model.

In practice, the 8, are not known. We have used maximum likelihood

J
estimates GJ in place of the GJ in our past research with apparent success

(see Drasgow et al., 1985, Figures 3 and U4). Of course other approaches to
estimation could be used. In fact, the well-known bias of maximum likelihood

estimates suggests that perhaps alternative estimation methods should be
explored.

Standardized extended caution indices. Let T2(J) and TM(J) denote
Tatsuoka's (1984) second and fourth extended caution indices computed for the

Jth test. Tatsuoka found that E[TZ(J)

Iej) = 0 and provided expressions for

E[TZ(J)IGJ] and the conditional variances of T2'J) and 8030 | The

standardized multi-test extensions of the two appropriateness
indices are then
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r 12'd)

T2
(£ Var[T2(j)IQJ]]

v (25)

(5 (J)
L [Ty E(T4 IBJJ]

T4 (26)

(L Var[Tu(J)lej)]”2

Again, it 1s necessary to substitute estimates for the GJ in Equations 25 and
26.

Fit statistics. The squared standardized residual fit statistic
described by Wright (1977) involves an item-by-item standardization of the
dichotomously scored item responses. Let Eij equal 1 or O depending upon
whether the examinee's response to item i on test j is correct or incorrect,
let gij(ej) equal the probability of a correct response to this item among

It and let Q, (8.) = 1 - P, (8,). Then a multi-test

examinees with ability 6 508, 548,
extension of Wright's statistic is

! [ p 2/p 6,)] 2
1 | Y- _iJ(eJ)J ,_ij(e)gij( J) . (27)

[T o B }

m
F1 = L
j=1 i

The second fit statistic that we investigated was described by Rudner
(1983). 1In our notation, this statistic is

()
Fe = R/V, ,
==
where
n
T (6 )12
R, = L u,, - P, .
=J i=1 ! =iy
and
n
V.= L P, (6)Q. .(6
ST SR T
An extension to the multi-test case is
m m
Fe= L R, /7L V.. (28)
j=1 4 T
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Approximations to Optimal Appropriateness Indices

Unidimensional Tests. Levine and Drasgow (1984) showed that the most
powerful appropriateness index for a given form of aberrance on a
unidimensional test is the likelihood ratio statistic LR given in Equation 2.

In our past research, we have evaluated the integrals in ENormal(u) and
EAberrant(u) by Simpson's rule, and used about 20 values of 8 to give the

likelihood ratio LR adequate accuracy. Although these numerical integrations
are not particularly burdensome for a modern computer, generalizations to
multi-test optimal indices would require excessive computations to evaluate
multidimensional integrals. For this reason, we are led to seek a way to
evaluate the integrals that will have a more convenient multi-test
generalization.

Under general conditions, it can be shown that likelihood functions
asymptotically (with the number n of items) have the shape of normal
densities. Consequently, for long tests

s 2
log ENormal(U|e) = ab” + bl + ¢ . (29)

Throughout this chapter, we shall assume that the ability distribution
f(8) is the standard normal, whence log[f(8)] is a quadratic in 8. Therefore,
both 1og[gNormal(u|e)-g(e)] and log[EAberrant(ule)'g(e)] should be

approximately quadratic. The justification of this approximation lies in the
high degree of agreement in Equation 29 and the high rates of detection of
aberrant response patterns obtained in the present research. The
computational details needed to reproduce our algorithm and replicate our
results follow.

If

. 2
L0 [Byymay (UI)£(0)] 2 26 + b6 + ¢ (30)

for a < 0, then

P (ul@)+£(9)do

2
' e(ae +b9+c)de

2 2 - 2y2 2
oCeD? /2K l e-(_e b/k2)2/{2(1/k M 40

2
/-t/a eceb /(-Ha)

1]

where k = /-2a and the last equality results from recognizing that the
integrand in the previous equation is proportional to a normal density.

In order for this approximation to be accurate, the quadratic must fit

well near the maximum of y(6) = log [Py (ul8)ef(8)]. We used the
following iterative procedure to obtain the quadratic. [t begins by
57
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‘fQ evaluating y at five points: 6° = the maximum likelihood estimate 8 of 6; §°
. + .3; and 8° + .6. Then a diagonal weight matrix is created with non-zero
o elements exply (8)-y(6°)) corresponding to the five 6 values. These weights
<y are restricted to the interval {0.00001, 10.0) for computational reasons.

: Then the method of weighted least squares is used to obtain the initial

" coefficients (a®, b°, ¢®) of the quadratic.

-

The maximum of the fitted quadratic is 8' = -b°/2a°®. [f 8' is within .15

-4, of 8°, the iterative procedure ends; otherwise, five new 8 values are selected

P~ as 8',

Pl
[e0]
I+

/(a°) 'log(2/3)

' and

[ 8' + /(§°)-1log(1/3)

+

Then the weights are recomputed, and weighted least squares is used to obtain

(a', b', ¢'). This process continues until Iel+1 - Gll S .15, (Stricter

- convergence requirements did not seem to improve the approximation in Equation

" 30.)
Two restrictions are imposed to ensure convergence:
g . i
. i) a s -.01;
and

i+ i

& i)y et se s e

Convergence 1is usually obtained in one or two iterations,

Plotted in Figure 6 are 98 of 100 pairs of likelihood ratios. The
abcissa values are the likelihood ratios that resulted from using Simpson's

rule to evaluate EN orm (u) and PAberrant(u); the ordinate values resulted

from the quadratic approx1mat10ns. The response patterns were simulated
normal examinees responding to a 30-item test, item characteristic curves were
three-parameter logistic ogives, ability was distributed as standard normal,
and the form of aberrance was 15% spuriously low. The two pairs of points not
plotted are (3.90, 3.91) and (5.07, 5.03).

L

Pt

Ry
Pl

S5,

In Figure 6, it is clear that the quadratic approximation was very
accurate for likelihood ratios of less than 2.0. [t was somewhat less
accurate for larger values. In A variety of other tests, we found the
approximation to be accurate for other aberrance hypotheses, for both
simulated normal and simulated aberrant response patterns.

/ As a final check on the quadratic approximation, we determined hit rates
for the 33% spuriously low condition using the itrm parameters from Chapter

I[IT. In this analysis, response vectors were gene. <ed from abilities in the
86 to 92 percentile range, and likelihoods were computed by Simpson's rule and
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Figure 6. Likelihood ratios evaluated by Simpson's rule and the
quadratic approximation for simulated normal response
patterns.
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by the quadratic approximation method. The detection rates at several false
alarm rates are given below. LR, denotes the optimal index for the
dichotomously scored item responses (ICCs were three-parameter logistic
ogives), and LRp denotes the optimal index for polychotomously scored item

responses. It is clear that the quadratic approximation is sufficiently
accurate for our purposes.

False Alarm Rate

Index Method .001 .01 .03 .05 .10
LRp Simpson .53 .67 .75 .18 .84
LRp Quad. Approx. .54 .66 .75 .19 .85
LR, Simpson .31 .53 .63 .68 .75
LR, Quad. Approx. .33 .51 .61 .66 .13

Two unidimensional tests. The likelihood that we must approximate is

E* = S P(Uy = u,i8,) P(U, = u,l8,) ¢,(8;0,L)d6 , (31)

2

where P(U

j = uJIOJ) is the likelihood of uj, J = 1,2, under either the
normal or aberrant model, @ = (91,62)', 0 = (0,0)',
_(te
()%

is the covariance matrix of the two traits, and ¢2 is the bivariate

standard normal density,

1

0,(0;0,5) = (dets)™%(2n)™! expl- 5 o'z o)

The final expression for the approximation and its derivation are given
in Appendix C. The final expression depends only on the correlation p between
0, and 62, which is assumed to be known, and the coefficients (31, by 91) and

(a,, b,, c,) of the quadratic approximations that can be fitted to the
=2' =2' =2

likelihood functions of the two tests separately by the method described for a

unidimensional test. Thus, we can fit quadratics to each separately by the
method previously described and then easily compute the approximation to F¥*.

Study One: Simulated ASVAB Data

Purpose. How effective are the practical multi-test appropriateness
indices relative to optimal multi-test appropriateness indices? What dre the
upper limits on the detectabilities of certain benchmark forms of aberrance
when information from several short tests is combined?

In order for the optimal indices to be truly optimal, all assumptions
used to specify the index must be true. For this reason, data were simulated
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in Study One that perfectly satisfied all assumptions. In Study Two, an
actual ASVAB data set was used so that we could evaluate the properties of the
optimal and practical indices in realistic settings.

Data generation. The ASVAB AR subtest, the first of our two
unidimensional tests, is a 30-item, four-option multiple-choice test. A
sample of N = 2,978 examinees was taken from the NORC data set by selecting
every fourth examinee (examinees 1, 5, 9, ...). The LOGIST (version 2B)
computer program (Wood et al., 1976) was used to estimate three-parameter
logistic ICCs. OCCs for the incorrect option (with omitted and not-reached
treated as a single incorrect option) were estimated by means of Levine's
(1985a; 1985b) MFS theory. A detailed description of these analyses was
presented in Chapter III.

The 15-item Paragraph Comprehension subtest and the 35-item Word
Knowledge subtest of the ASVAB were pooled to form our second unidimensional
test. These two tests correlate .82 (Ree, Mullins, Mathews, & Massey, 1982),
and their correlation corrected for attenuation is .96. Consequently, fitting
unidimensional item response models to the pooled, 50-item Word Knowledge -~
Paragraph Comprehension (WKPC) subtest seemed justified.

As with the AR subtest, LOGIST was used to estimate ICCs, and MFS was
used to estimate OCCs. Plots showing estimated curves and empirical
proportions indicated good fits of both the ICCs and OCCs to the data.

The ICCs and OCCs estimated from the AR and WKPC subtests were used as
the "true" ICCs and OCCs for the rest of Study One. As the first step in the
simulation, a sample of 3,000 simulated response patterns was created and used
as a test norming sample. The ICCs previously estimated were used to
determine probabilities of correct responses, and the MFS OCCs were used to
determine the probabilities of incorrect options. Abilities for the two tests
were sampled from a bivariate standard normal distribution with the
correlation parameter set equal to .8 (the correlations of WK and PC with AR
are about .8 after correcting for unreliability; see Ree et al., 1982). Thus,
for each simulated response pattern, a vector (61, 82) was sampled from a

bivariate standard normal with a correlation of .8; 91 and the AR ICCs and

OCCs were used to simulate a polychotomously scored 30-item unidimensional
test; and 92 and the WKPC ICCs and OCCs were used to simulate a

polychotomously scored 50-item unidimensiconal test. The entire response
vector of 80 items was taken as the data provided by one simulee.

The test norming sample was then used to determine the item and test
statistics required to compute the multi-test practical appropriateness
indices based on the three-parameter logistic model (z,, T2, T4, F1, F2).
This entailed two runs of LOGIST (one for the simulated AR and one for the
simulated WKPC) and two runs of our own FORTRAN program.

A normal sample of 4,000 response vectors and 16 aberrant samples of
2,000 response vectors each were then created. The normal sample was
generated exactly as was the test norming sample (except, of course, that
different seeds were used for the random number generators). As in Chapters
IT and III, the aberrant samples resulted from varying three factors: the

o




type of aberrance (spuriously high; spuriously low), the severity of aberrance
(mild; moderate), and the distribution from which simulated abilities were
sampled.

Eight of the aberrant samples contained spuriously high response vectors,
and the remaining eight samples contained spuriously low response vectors.
Spuriocusly high response patterns were created replacing a given percentage k
of simulated responses (randomly sampled without replacement) with correct -
responses for each of the two simulated unidimensional tests separately.
Spuriously low response patterns were also created by applying the spuriously
low manipulation to each of the two unidimensional tests separately. Mildly
aberrant response patterns were generated by using k = 15% (i.e., 5 of 30 AR
items and 8 of 50 WKPC items). Moderately aberrant response patterns were
created using k = 30% (i.e., 9 of 30 AR items and 15 of 50 WKPC items).

The third variable manipulated was the ability level of the aberrant
sample. A composite ability was computed for each examinee by the formula

914-92

1/
[Var‘(G1 + 92)]

- (8

5 - + 92)/1.9

1

Notice that the composite ability has a standard normal distribution.
Composite abilities for the spuriously high samples were sampled from four
parts of the standard normal distribution: very low (0th through 9th
percentiles), low (10th through 30th percentiles), low average (31st through
48th percentiles), and high average (49th to 64th percentiles). Composite
abilities were sampled from four average to high ability strata for the
spuriously low samples: low average (31st to 48th percentiles), high average
(49th tnrough 64th percentiles), high (65th through 92nd percentiles), and
very high (93rd percentile and above).

Analysis. The practical appropriateness indices were computed for the
4000 response vectors in the normal sample. The item and test statistics
estimated from the test norming sample were used to compute all but one
appropriateness index. The one exception was the standardized &, index
computed from the polychotomously scored item responses, denoted zp. It was

computed using the true OCCs and ICCs. This allowed us to bypass estimation
of OCCs from the test norming sample and provided a significant reduction in
computing time. (Despite the advantage gained by being computed from true
rather than estimated OCCs, it is shown below that zp fell short of some other

indices. Therefore, the advantage given to zp was of little practical
consequence. )

One non-IRT index was also computed: the Deliberate Failure Key (DFK),
which was provided by the AFHRL.

Optimal appropriateness indices were computed (using the true OCCs and
[CCs) for the normal sample for four aberrant conditions: 15% spuriously
high, 30% spuriously high, '5% spuriously low, and 30% spuriously low. For
each of these conditions two optimal appropriateness indices were computed.




The first, LRp, is the optimal index for polychotomous scoring of the item

responses. The second index, LR,, results from using only the information in
- the dichotomously scored item responses. Thus, LR, is based on a submodel for
. the polychotomous data in which all the incorrect responses are grouped
-~ together.

O The practical appropriateness indices were computed for each of the 16
aberrant samples. In addition, the three-parameter logistic and polychotomous
] model 15% spuriously high optimal indices were computed for the four samples
o with this form of aberrance, the 30% spuriously high optimal indices were

- computed for the four samples with this form of aberrance, etc.

Results. The results for the spuriously high conditions are given in
Tables 18 through 21, and results for the spuriously low conditions are given
in Tables 22 through 25. These tables show that the multi-test extensions
provide sizable gains in detection rates. Table 18, which presents the
results for the lowest ability range, illustrates this point. At a 1% false
alarm rate for the 15% spuriously high condition, the polychotomous optimal
index LRp detected 22% of the aberrant response patterns if only the AR item

A
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responses were used, 37% from the WKPC item responses, and 55% from the
combined 80 items. In Chapter II, we obtained a 50% detection rate under
these conditions (15% spuriously high, O to 9th percentile ability range) for
an 85-item unidimensional test. In fact, our polychotomous model, multi-test
optimal index provided detection rates that are very similar to the rates
obtained in Chapter II: At false alarm rates of 3%, 5% and 10%, our hit rates
were 67%, 72%, and 78% for the 15% spuriously high treatment, respectively;
the hit rates in Chapter Il were 64%, 70% and 77%. For the 30% spuriously
high treatment at false alarm rates of 1%, 3%, 5%, and 10%, the hit rates were
88%, 92%, 94% and 95%, respectively; the hit rates in Chapter Il were 93%,
95%, 97% and 98%.

-
R AR

-

Comparisons of Tables 18 through 25 with our earlier results reveal that
the polychotomous model, multi-test optimal indices provide detection rate.
that are generally similar to the rates provided by the polychotomous model
optimal indices for the long unidimensional test. The differences that occur
: seem to be more due to the differences in the characteristics of the item
5 pools (the items in the earlier study tended to be more difficult than the
Y items used here) than to the dimensionality of the latent trait space (i.e.,
o use of the multi-test extensions).

Ca e e s

N 4
DTSN

; The hit rates for the multi-test practical appropriateness indices are
2. less similar to the hit rates of practical indices on long unidimensional

: tests. The differences are particularly obvious for the spuriously high

) - - conditions. Perhaps the best way to illustrate the differences is to compare
) the detection rate of the best practical index to the detection rate of the
optimal index. At a 1% false positive rate for the 30% spuriously high
treatment in Table 18, this ratio equals .75 for z, divided by .88 for LRp;

: namely, .75/.88 = .85. The corresponding ratio was .98 in Chapter II (.91 for
T T2 divided by .93 for LRp). For the next higher ability range (10th through

30th percentiles), the ratic is .58 in Table 19; the corresponding ratic from
- Chapter Il is .91. Finally, the ratio for the low average ability range from
Table 20 is .47, and the ratio from Chapter Il is .73.
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' j‘ Table 18. Selected ROC Points for Spuriously High
W, Response Patterns Generated from the 00-09% Ability Range
" False Proportion detected by
- alarm
oo rate Test LR LR, z z, F1 F2 T2 T4 DFK
A p P
e
kK
15% Spuriously High Treatment
. .001 AR 06 03 00 02 00 00 01 01
N WKPC 19 07 00 05 00 01 01 03
~ MT 26 15 01 12 00 01 ol oY 00
N
) .01 AR 22 20 oY 13 02 12 06 07
. WKPC 37 22 ol 24 00 10 07 09
T MT 55 37 07 36 00 18 15 14 01
o .03 AR 38 31 09 25 o4 24 19 16
o WKPC 49 35 10 41 00 22 17 17
Py MT 67 48 14 56 03 37 23 25 04
;1ﬁ .05 AR 46 39 14 33 13 32 26 21
g2 WKPC 57 41 15 50 00 30 24 23
- MT 72 53 19 65 07 49 39 32 08
e .10 AR 55 50 25 50 35 49 42 33
WKPC 66 ug 25 63 13 L7 37 35
N MT 78 62 28 76 40 66 56 47 26
_. 30% Spuriously High Treatment
p
N .001 AR 29 21 00 12 00 00 10 06
J WKPC 42 19 00 21 00 01 | 17
v MT 74 4y 02 Ly 00 ol 34 3 00
N .01 AR 52 42 07 37 01 2 28 27
= WKPC 68 41 07 50 00 18 33 34 !
o MT 88 69 13 15 00 4y 60 56 00 ;
i .03 AR 66 57 17 52 10 42 48 41
- WKPC 79 53 15 67 00 39 50 48
S MT 92 77 25 86 00 67 71 71 00 '
o .05 AR 72 64 25 62 26 52 58 50 |
5 - WKPC 82 59 22 76 03 50 60 55
'O MT 94 80 33 90 21 79 85 78 01
.:\
) .10 AR 79 71 39 76 52 69 73 65
iy WKPC 86 64 34 84 34 70 73 69
o MT 95 84 47 95 67 89 91 88 08
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Table 19. Selected ROC Points for Spuriously High
Response Patterns Generated from the 10-30% Ability Range

False
alarm
rate

Proportion detected by

.00

.01

.03

.05

.10

.001

.01

.03

.05

.10

Test LRp LR, Zp Z, F1 F2 T2 T4 DFK
15% Spuriously High Treatment

AR o4 03 (o]0] 01 00 00 o1 00

WKPC 05 02 00 01 00 00 01 01

MT 10 07 00 03 00 00 03 03 00
AR 17 17 02 10 01 06 07 08

WKPC 18 1" 01 08 (8]0] o1 07 07

MT 37 27 02 16 00 ol 12 12 00
AR 33 28 06 19 03 14 18 16

WKPC 31 U 05 17 00 05 13 i2

MT 50 42 06 31 01 13 23 22 00
AR 4o 37 09 26 09 20 24 22

WKPC 40 30 08 25 01 09 18 16

MT 58 U9 09 38 o4 22 32 28 00
AR 51 49 19 4o 25 34 4o 33

WKPC 51 Lo 15 37 1 21 N 26

MT 66 59 17 52 21 38 u7 41 03

30% Spuriously High Treatment

AR 20 18 00 07 00 00 08 05

WKPC 16 08 00 ol 00 00 08 07

MT 50 3 00 15 00 00 22 20 00
AR 42 37 01 26 00 15 23 24

WKPC 4s 28 02 17 00 03 22 20

MT 74 59 ol 39 00 17 43 42 00
AR 60 53 ! 40 07 29 40 37

WKPC 60 42 06 31 01 13 35 32

MT 82 70 11 59 o4 37 60 58 00
AR 67 61 15 49 17 38 Lq 47

WKPC 66 Lg 10 4o 07 22 43 38

MT 86 T4 16 67 R 53 69 67 00
AR 15 T 27 65 38 57 65 62

WKPC T2 56 19 53 24 Lo 517 52 !
MT 89 80 26 78 u 69 80 78 00 ;

h5
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Table 20. Selected ROC Points for Spuriously High
Response Patterns Generated from the 31-48% Ability Range

G LRAAA

2 False Proportion detected by
N alarm
o rate Test LRp LR, zp 2, F1 F2 T2 T4 DFK
-
@ 15% Spuriously High Treatment
{ .001 AR 02 01 00 01 00 00 01 00
S WKPC 00 00 00 00 00 00 01 01
N MT 02 02 00 00 00 00 03 02 00
.01 AR 09 1 00 07 00 03 06 06
N WKPC 05 ol 00 02 00 00 05 oY
o MT 21 17 01 06 00 02 10 10 00
1)
. .03 AR 24 21 03 14 02 08 16 0
) WKPC 16 4 02 07 02 03 1 10
MT 35 31 03 16 03 08 20 20 00
. .05 AR 34 30 05 19 07 13 21 21
- WKPC 2u 21 05 12 07 05 17 15
N MT us5 40 06 22 06 14 21 21 00
. .10 AR 46 45 13 33 18 26 36 35
" WKPC 39 33 12 22 17 4 28 25
- MT 59 51 12 34 19 27 39 40 00
LN
<. 30% Spuriously High Treatment
| .001 AR 11 09 00 03 00 00 0k 03
> WKPC 02 01 00 00 00 00 03 03
F- MT 21 1 00 02 00 00 09 10 00
R .01 AR 30 27 01 15 01 07 15 18
Y WKPC 19 12 01 ol 0! 01 1 1
. MT 53 42 01 14 01 07 23 25 00
- .03 AR 48 43 05 26 06 18 29 32
- WKPC 35 2y 03 12 05 05 19 19
. MT 69 58 05 28 07 18 36 39 00
.05 AR 57 53 08 35 13 27 38 41 .
o WKPC 45 32 06 19 12 10 26 25
RS MT 75 64 08 36 14 29 46 48 00
- 10 AR 70 66 17 50 31 45 52 5k
. WKPC 56 Uy 14 29 25 23 38 37
MT 80 72 16 51 32 47 62 6u 0U
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"::;:- Table 2'. Selected ROC Points for Spuriously High
PYAY Response Patterns Generated from the 49-64% Ability Range
g False Proportion detected by
"\
)\{ alarm
,,Q: rate Test LR LR, z 2z, F1 F2 T2 T4 DFK
o P P
W
1564 Spuriously High Treatment
.
& 001 AR 00 00 00 00 00 00 00 00
e WKPC 00 00 00 00 00 00 00 00
oy MT 00 00 00 00 00 00 01 01 00
s,.
.01 AR Ol 05 00 ol 00 01 04 05
v WKPC 01 01 00 00 01 00 03 03
MT 06 06 00 01 01 01 04 05 00
o .03 AR 14 12 o 09 04 05 10 r
WKPC 05 05 02 03 05 02 08 08
‘ MT 18 17 02 06 05 o4 h 12 00
N .05 AR 22 19 03 13 08 09 14 16
S WKPC 11 1 ol 06 10 ol 12 n
N MT 30 25 04 10 09 09 16 17 00
' .10 AR 37 33 09 23 16 20 25 26
ey WKPC 24 22 09 13 19 12 20 20
" MT 47 42 08 19 19 19 28 29 00
2 :f 30% Spuriously High Treatment
' .00 AR 03 03 00 00 00 00 01 01
X WKPC 00 00 00 00 00 00 01 01
’::; MT 05 03 00 00 00 00 02 03 00
", *
e .01 AR 15 L 00 08 02 04 08 11
2 WKPC 06 05 00 01 02 00 05 05
- MT 31 23 00 03 02 o4 09 12 00
N .03 AR 32 27 02 6 08" 1 17 22
NN wWKPC 18 12 02 05 08 03 10 0
- MT ug 39 03 n 09 A 19 23 00
N_'.':
1 .05 AR 42 36 05 2" 14 18 22 27
g ) WKPC 27 22 Ol 08 4 06 15 15
o MT 59 49 05 17 15 13 2 30 00
- 10 AR 58 o . 3 27 30 34 37
. WKPC 4t 34 10 4 2u 15 24 27
% MT b9 59 12 2 27 32 42 bl "
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Table 22. Selected ROC Points for Spuriously Low
Response Patterns Generated from the 31-U48% Ability Range

False Proportion detected by
alarm
rate Test LRp LR, zp 2, F1 F2 T2 T4 DFK

15% Spuriously Low Treatment

.001 AR 05 00 00 01 00 00 00 U1

WKPC 07 02 00 00 00 00 03 02

MT 20 02 01 01 00 00 01 01 30
.01 AR 13 04 07 06 01 03 o4 04

WKPC 2U 08 10 08 00 01 07 07

MT 32 08 16 12 00 02 06 09 00
.03 AR 22 10 14 11 05 07 09 1

WKP 37 23 22 19 02 05 13 13

MT u7 26 29 19 03 07 14 18 00
.05 AR 26 18 20 16 10 10 15 15

WKPC Ls 32 31 27 07 12 18 19

MT 5y 38 36 29 09 13 21 24 01
.10 AR 39 29 30 26 22 19 24 24

WKPC 56 46 43 37 23 20 29 29

MT 65 55 52 41 27 25 33 33 06

30% Spuriously Low Treatment

001 AR 06 00 00 02 00 00 02 01

WKPC 17 07 03 o4 00 00 ol 06

MT 38 16 08 08 00 00 ol 07 00
.01 AR 21 08 " R 02 06 06 08

WKPC 49 25 25 20 00 03 12 16

MT 62 33 36 26 00 06 13 20 00
.03 AR 38 24 22 19 09 12 15 16

WKPC 59 44 43 36 02 12 20 27

MT 73 52 53 41 06 17 25 31 02
.05 AR 46 32 30 24 19 18 18 22

WKPC 67 52 55 45 09 18 26 33

MT 80 63 64 49 15 27 33 41 05
10 AR 59 a7 bl 36 35 29 29 34

WKPC 80 63 69 57 35 35 39 us

MT 88 75 177 60 43 42 45 54 '8
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Table 23. Selected ROC Points for Spuriously Low
Response Patterns Generated from the 49-64% Ability Range

False Proportion detected by
alarm
rate Test LRp LR, zp 2, F1 F2 T2 TY DFK

153 Spuriously Low Treatment

.001 AR 03 00 00 01 00 00 01 01

WKPC 18 07 00 01 00 00 06 05

MT 25 o4 02 03 00 00 05 05 00
.01 AR 17 06 07 07 02 02 05 05

WKPC 4l 25 11 12 01 02 16 14

MT 50 27 18 17 01 03 16 15 00
.03 AR 27 15 14 13 08 07 13 12

WKPC 55 g 26 28 13 10 26 22

MT 63 us 34 31 15 1 217 27 00
.05 AR 32 24 20 18 16 1 17 17

WKPC 60 u7 38 37 26 17 32 29

MT 67 52 Ly 40 27 20 36 34 00
.10 AR 43 34 33 29 29 20 29 27

WKPC 67 57 53 50 49 33 4y U1

MT 75 63 58 52 51 34 48 46 01

30% Spuriously Low Treatment

.001 AR 1" 01 01 03 00 00 03 01

WKPC 37 20 06 1 00 00 14 16

MT 60 34 16 16 00 00 14 16 00
.01 AR 32 Lt 15 15 02 07 10 10

WKPC 66 43 33 35 00 08 217 30

MT 78 52 50 4 00 12 30 35 00
.03 AR u6 29 29 24 13 13 20 20

WKPC 75 59 54 52 09 23 40 43

MT 85 68 69 59 5 27 47 50 00
.05 AR 53 37 37 30 26 19 217 27

WKPC 79 66 67 61 217 32 48 50

MT 89 74 17 66 3 40 55 58 01
.10 AR U 48 53 42 40 31 39 39

WKPC 87 76 80 72 57 53 60 62

MT 93 83 86 76 64 59 67 69 05
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Table 24. Selected ROC Points for Spuriously Low
. Response Patterns Generated from the 65-92% Ability Range

;:: False Proportion detected by
T alarm
' rate  Test LR (R, z z, Fi F2 T2 0 DEK
. p P
o 15% Spuriously Low Treatment
- 001 AR W o4 00 02 00 00 02 O 1
o WKPC 42 27 03 25 00 00 18 14
~. MT 55 27 08 12 00 00 19 14 00
.01 AR 34 19 08 13 13 05 09 09
N WKPC 66 49 22 25 16 09 35 30
. MT 74 56 30 34 22 14 38 3 00
- .03 AR 4y 31 19 22 28 14 21 19
o WKPC 73 61 42 45 43 25 50 42
A MT 81 69 52 54 53 31 53 u7 00
Y
> .05 AR 4 38 26 29 3% 20 2T 25
o WKPC 75 65 54 55 58 35 58 49
2 MT 84 73 63 62 63 43 62 56 00
A .10 AR 56 46 42 42 47 33 42 36
- WKPC 80 72 69 69 T4 56 68 63
o MT 87 79 76 73 79 59 73 69 00
N
o 30% Spuriously Low Treatment
“
001 AR 28 10 01 1 00 00 1 07
2 WKPC 61 42 10 22 00 01 39 37
Y MT 81 63 29 41 00 02 48 43 00
)
.:: .01 AR 48 31 22 30 12 16 26 24
. WKPC 81 64 ué 55 02 25 517 57
) MT 89 76 67 69 07 39 66 66 00
- .03 AR 61 45 38 42 31 28 40 38
. WKPC 85 75 68 71 30 48 69 67
(- MT 92 84 82 82 48 60 78 77 00
<.
.05 AR 67 50 47 48 4y 37 46 45
- WKPC 88 79 79 78 54 60 75 73
MT 94 87 88 86 65 72 83 83 00
- .10 AR 74 60 63 61 57 52 00 56
- WKPC 93 85 89 86 79 76 82 82
MT 96 91 94 92 85 84 90 89 0
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Table 25.

Selected ROC Points for Spuriously Low

Response Patterns Generated from the 93-100% Ability Range

False
alarm
rate

Test

Proportion detected by

LR
p

LR,

2,

F1

F2

T2

T4

DFK

154 Spuriously Low Treatment

.00 AR 49 26
WKPC 66 46
MT 89 69
.01 AR 59 48
WKPC 80 62
MT 93 78
.03 AR 69 57
WKPC 85 T4
MT g4 86
.05 AR 72 61
WKPC 86 17
MT 95 88
.10 AR 77 67
WKPC 89 82
MT 96 91
30% Spuriously Low Treatment
.001 AR 56 34
WKPC 78 61
MT 96 89
.01 AR 75 59
WKPC 90 79
MT 98 93
.03 AR 82 70
WKPC 93 85
MT 98 95
.05 AR 85 T4
WKPC g4 87
MT 98 96
.0 AR 89 80
WKPC 96 90
MT 39 97

05
07
16

19
38
62

34
57
78

43
71
84

60
83
93

03
12
45

33
58
85

53
78
94

63
87
96

80
94
98

06
05
18
23

35
62

37
73
47
83
62

80
91

30
27
70

55
92
70
85
96

76
90

98

86
95

99

10
02
09

43
4o
58

60
70
84

66
80
89

73
95

02
00
00

46
00
39

68

55
84

T
76
92

85
92
97

00
00
03

17
18
38

36
Lo
62

42
56
72

59
67
84

00
00
07

4
43

60
m
9N
69
95

81
91

07
39
by

23
57
66

37
70

83

48
78

89

64
ERS

29
61
82

57
82
94

69
89
97

75
92
98

85
96
99

06
24

29

21
48
62

37
63
78

46
A

8l

60
81
90

00

00

00

00

00

00

00

00

00

00




Discussion. The comparisons of the detection rates of the multi-test
practical indices to rates for LRp show an important difference between

unidimensional Appropriateness Measurement and multidimensional
Appropriateness Measurement. Specifically, z,, T2, and T4 efficiently
detected spuriously high response patterns on the long unidimensional SAT-V.
Tables 18 through 21 show that we did not replicate this finding with the
short AR and WKPC tests: There are substantial differences in hit rates
between practical and optimal multi-test appropriateness indices. This
finding provides a motivation for seeking better practical appropriateness
indices.

Study Two: Actual ASVAB Data

Purpose. Do the results obtained for simulated ASVAB data generalize to
actual ASVAB data? In previous research (Drasgow et al., 1985; Levine &
Drasgow, 1982), we found that unidimensional {, appropriateness indices
provided similar rates of detection with real and simulated data. Will we
obtain similar results for the multi-test extensions of the standardized %,
index and the other appropriateness indices?

For an optimal appropriateness index to be truly optimal, ICCs (and OCCs
if the analysis is polychotomous) must be known and must fit the data, tests
assumed to be unidimensional must be truly unidimensional, the correlation
between ability on test one and ability on test two must be known, and the
ability density must be known. We violated all of these conditions in Study
Two. To what extent will detection rates for optimal indices be degraded?

Data sets. The NORC sample provided the data base for Stuiy Two. The
test norming sample consisted of responses of the N = 2,978 NORC examinees
ana.yzed in the first phase of Study One. The AR and WKPC ICCs and OCCs
estimated from this sample were used for all analyses in Study Two. Also, the
statistics needed for the T2 and TY indices were obtained from this sample.
Finally, a standardized residual (SR) measure was created by first regressing
the total number-right score from the AR and WKPC subtests on the Math
Knowledge (MK) and General Science GS) subtests of the ASVAB,

Predicted (AR + WKPC) = é. + ézMK + é,GS
= 7.98 + 1.20MK + 1.88GS ,
and then standardizing the residual
AR + WKPC - Predictad (AR + WKPC)

as described ty Cook and Weisberg (1982). The correlation between MK and AR,

after correcting for attenuation, is .88; the corrected correlation between GS
and WK is .94; and the corrected correlation between GS and PC is .90 (Ree et

al., 1982). Large positive values of SR were used to indicate spuriously high
test scores, and large nagative values of SR were taken to indicate spuriously
.LeW scores,
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A normal sample of 2,716 response vectors was formed by selecting every
fourth examinee (2, 6, 10, ...) from the NORC sample, and then deleting the
data from the 262 examinees who failed to answer at least 77% of the items on
both the AR and the WKPC subtests. The requirement that examinees answer at
least 77% of the items is based on the Drasgow et al. (1985) conclusion that
test scores of individuals who answer less than 77% of the test are very
likely to be invalid measures of ability.

The remaining examinees from the NORC sample (examinees 3, 4, 7, 8, 11,
12,...) were used to form six more samples. These samples were created by
first determining the frequency distribution of total score across both the Ak
and WKPC subtests (i.e., AR + WKPC); sorting into groups on the basis of the
percentiles used for the AFQT Categories; and finally, removing examinees who
answered fewer than 77% of the items on either the AR or WKPC subtests. Score
ranges and sample sizes for the six groups were:

AR + WKPC Sample

Sample Score Range Size
very high 74 to 80 49y
high 59 to 73 1537
high average 50 to 58 941
low average 39 to 49 959
low 24 to 38 1155
very low 0 to 23 342

Aberrant samples were formed exactly as in Study One. Thus, the 15% and
30% spuriously high treatments were applied to the four lowest ability groups,
and the 15% and 30% spuriously low treatments were applied to the four
aighest ability groups.

Analysis. Appropriateness indices were computed as in Study One, with
the main exception that optimal indices were computed with ICCs and OCCs
estimated from the test norming sample. The correlation between 6, and 8, was
assumed to be .8, and the ability density was assumed to be the standard
normal truncated to (-5.0, 3.5). Appropriateness indices were computed for
the six samples stratified on ability, before the aberrance treatments as well
as after each aberrance treatment.

Index standardization. Although each practical appropriateness index
(except DFK) was standardized, the expressions for the conditional
expectations and variances of the indices were obtained using the assumption
that 8, and 8, were known. Of course, in practice, they are unknown;
therefore, it is important to investigate the conditional distributions of the
appropriateness indices for normal examinees.

The standardizations of the practical indices can be determined from
Figure 7. This figure presents KOC curves for seven practical appropriateness

73
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indices: zp, z,, F1, F2, T2, T4, and SR. Abcissa values in all cases were

determined from the normal sample of 2,716 examinees. For the top row of the
figure, ordinate values were based on the responses of the 342 examinees in
the very low ability range prior to any aberrance manipulation (i.e., this
sample was simply a normal, low ability group). Ordinate values for the
middle row of the figure were based on the low average sample, and the bottom
row was determined from the very high ability sample. Response patterns were
presumably normal for these two samples as well (we had not applied any
aberrance treatment). Only the lower left quarter of each ROC curve is shown, i
in order to conserve space and because we are primarily concerned with an
index's standardization for low misclassification rates. Results for the
other three ability ranges are not shown because they were consistent With the
trends that are apparent in Figure 7.

In Figure 7, it is clear that zp, SR, and F1 are not consistently well

standardized; z, is reasonably well standardized across ability levels,
although its performance for the highest ability level is somewhat
disappointing; and F2 is fairly well standardized across ability levels. The
most surprising results are the very accurate standardizations of the multi-
test extensions of T2 and T4. Their standardizations were not very good for
the long unidimensional test studied in Chapter II; here, their
standardizations are excellent except, perhaps, for the highest ability group.

Detection of aberrant response patterns. Tables 26 through 33 present
the detection rates for the multi-test appropriateness indices when they are
applied to actual ASVAB data. Comparing the results for the spuriously high
conditions for real data (Tables 26 through 29) to the results for simulation
data (Tables 18 through 21) reveals generally similar detection rates. The
detection rates for the polychotomous model optimal index LRp tended to be

moderately decreased for the actual ASVAB data, but detection rates for the
dichotomous model appropriateness indices were relatively unchanged.

Of the practical appropriateness indices, z, is clearly the most
effective for the lowest ability range. The T2 and T4 indices had detection
rates comparable to z, in the 10% to 30% ability range and appear slightly
superior for the low average and high average ability ranges. The other five
practical appropriateness indices (zp, F1, F2, SR, and DFK) all had detection

rates far lower than z,, T2, and T4.

Although the detection rates for the spuriously high conditions are
similar across the simulated and real data sets, there is an important
difference: Both the normal and the aberrant groups for the actual ASVAB data
sets had generally larger index scores. For example, 1.6% of the 4,000
simulated normals from Study One had z, scores less than -2.0,and 11.4% had z,
scores less than -1.0 . For the 2,716 NORC examinees taken as the normal
group, the corresponding rates were 3.4% and 16.2%. This trend was also
apparent for T2, T4, and the three-parameter logistic optimal index. For
example, LR, had 4.2% and 12.9% of its values greater than 5 and 2,
respectively, for the NORC normals, versus only 1.8% and 7.7% for the Study
One simulated normals.
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Table 26. Selected ROC Points for Spuriously High Response Patterns
Created from NORC Examinees in the 00-09% Ability Range
e False Proporticon detected by
- alarm
- rate  Test LR LR, 'z z, F1 F2 T2 T4 SR  DFK
i‘:
' 15¢ Spuriously High Treatment -
o .001 AR 06 05 00 02 00 00 01 00
R WKPC 06 O4 00 00 00 04 00 00
- MT 13 07 02 09 00 03 Ol 02 00 00
b .01 AR 17 17 05 14 00 11 09 07
WKPC 24 21 09 26 00 17 09 10
2 MT 38 32 11 38 00 25 18 1 00 03
7] .03 AR 35 28 15 29 02 31 18 14
[ WKPC 36 36 22 43 00 32 18 22
" MT 53 50 27 61 00 42 29 25 00 1"
& .05 AR 42 39 22 39 1t 39 23 18
5 WKPC 39 W1 32 54 02 37 25 29
MT 58 58 38 69 08 59 4o 33 02 18
.10 AR 58 51 34 56 33 52 Lo 30
WKPC 49 52 47 69 23 55 W1 46
> MT 65 68 54 79 42 M 59 46 05 37
: 303 Spuriously High Treatment
~
~ .001 AR 26 10 00 10 00 01 o4 00
WKPC 25 08 00 16 00 05 12 15
v MT 52 48 01 48 00 10 32 20 01 00
' .01 AR 48 39 o4 39 00 21 29 25
. WKPC 51 42 08 60 00 21 41 41
AY MT 82 72 17 75 00 43 64 56 o4 00
™ .03 AR 67 58 21 55 07 45 46 39 :
o WKPC 62 58 28 73 00 46 55 60 :
- MT 84 81 32 8 00 65 15 72 w02 -
F-.: .05 AR 70 64 32 65 21 54 5T 45
WKPC 64 64 37 79 O4 51 61 69
i MT 88 84 47 93 25 8 8 77T 25 03
; .10 AR 76 73 45 81 51 69 71 61
. WKPC 70 70 52 89 42 12 77 8
, MT 90 89 61 96 67 90 93 88 39 20
>,
‘\:
\.
5.
Y 70
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" Table 27. Selected ROC Points for Spuriously High Response Patterns
i Created from NORC Examinees in the 10-30% Ability Range
.. False Proportion detected by
- alarm
" rate Test LRp LR, 2z z, F1 F2 T2 T4 SR DFK
- 15% Spuriously High Treatment
- .001 AR 02 03 00 01 00 00 00 0O
: WKPC ol 02 00 02 00 00 02 01
- MT 06 03 00 05 00 01 02 03 00 00
N
™ .01 AR 15 14 01 09 00 06 05 05
WKPC 17 16 02 16 00 03 12 1"
- MT 28 26 03 19 00 06 18 12 01 00
- .03 AR 30 29 07 21 of 17 17 13
> WKPC 31 33 06 217 00 1 21 22
{ MT 47 45 07 38 00 4 27 24 03 00
- .05 AR 41 39 12 30 06 24 22 17
WKPC 38 39 11 34 01 4 27 28
MT 55 54 12 46 03 26 36 3 06 01
.10 AR 54 52 20 45 19 36 38 29
‘ WKPC 51 53 20 47 10 27 42 42
p-. MT 66 65 24 60 18 4y 54 47 16 07
30% Spuriocusly High Treatment
- .001 AR 18 11 00 07 00 00 o] 01
. WKPC 13 09 00 05 00 01 09 07
. MT 33 35 00 17 00 01 18 10 02 00
s .01 AR 43 35 01 26 00 09 23 21
y WKPC 33 30 01 23 00 07 25 24
- MT 64 58 03 38 00 15 46 4o 09 00
- .03 AR 60 55 10 43 03 31 43 M1
- WKPC 52 49 05 34 00 18 38 38 .
.. MT 77 71 09 63 00 34 59 60 23 00 '
> 05 AR 68 63 16 Sk 11 41 51 47
WKPC 61 55 10 43 ol 22 45 U5
N MT 82 79 15 70 10 50 70 69 33 00
“~
N .10 AR 75 73 29 71 32 59 67 62
.. WKPC 68 65 21 61 21 38 61 61
‘N MT 88 86 30 82 36 70 82 80 50 02
77
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Table 28. Selected ROC Points for Spuriously High Response Patterns
Created from NORC Examinees in the 31-48% Ability Range

False Proportion detected by
alarm
rate Test LRp LR, zp Z, F1 F2 T2 T4 SR DFK

15% Spuriously High Treatment

.001 AR 01 01 00 01 00 00 00 0O

WKPC 00 00 00 00 00 00 01 00

MT 01 00 00 00 00 00 01 01 00 QO
.01 AR 08 08 01 04 00 01 05  O4

WKPC 03 02 00 03 00 01 o4  O4

MT 09 07 01 03 00 O1 08 06 02 00
.03 AR 19 18 o4 12 01 07T 4 12

WKPC 12 11 01 06 01 03 09 1

MT 24 2% 02 13 01 03 16 16 09 00
.05 AR 27 27 07 19 03 13 20 16

WKPC 19 16 02 08 02 o4 14 15

MT 33 30 03 17 03 10 21 21 15 00
.10 AR 41 39 13 32 12 23 31 28

WKPC 33 31 08 18 10 10 24 24

MT 50 47 10 28 1121 3 32 27 00

30% Spuriously High Treatment

.001 AR 09 06 00 02 00 00 01 00
WKPC 01 01 00 00 00 00 Ol 01
MT 09 11 00 01 00 00 03 02 03 00
.01 AR 30 23 01 15 00 0% 14 16
WKPC 09 07 00 02 00 01 07 07
MT 42 31 00 07 00 03 1T 17T 13 00
.03 AR 46 43 o4 29 03 19 30 31
WKPC 24 20 01 06 01 o4 13 15
MT 61 50 01 20 01 11 28 32 27T 00 ]
.05 AR 55 5t 09 36 08 29 37 37
WKPC 33 31 02 09 06 06 17 20 1
MT 67 61 03 28 08 22 37 42 38 00
.10 AR 68 64 19 50 23 43 50 52
WKPC 45 44 07 20 14 30 32
MT 77 73 13 45 20 40 54 59 57 00
76
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" Table 29. Selected ROC Points for Spuriously High Response Patterns
: Created from NORC Examinees in the 49-64% Ability Range
False Proportion detected by
N alarm
- rate Test LRp LR, zp 2z, F1 Fe T2 T4 SR DFK
v 15% Spuriously High Treatment
s .001 AR 00 01 00 00 00 00 0O 00
- WKPC 00 00 00 00 00 00 00 00
‘- MT 00 00 00 00 00 00 00 00 01 00
. .01 AR 02 03 01 02 00 01 02 02
WKPC 01 00 00 00 00 00  O1 01
MT 02 0t 00 01 00 01 03 03 04 00
“.
Z:: .03 AR 10 10 02 08 02 03 10 M
R WKPC o4 02 00 01 03 01 0l 02
MT 12 08 01 ov 01 02 1209 15 00
[
.05 AR 18 18 04 15 07 08 15 15
WKPC 07 05 01 03 06 03 07 10
[o MT 23 18 01 07 0T 07T 12 15 21 00
.10 AR 34 3 09 25 14 18 26 25
WKPC 20 16 Ob 10 13 09 14 17
- MT u3 37 07 16 16 17 24 26 35 00
;E: 30% Spuriously High Treatment
- 001 AR 03 01 00 01 00 00 01 00
WKPC 00 00 00 00 00 00 00 00
MT 01 01 00 00 00 00 O 00 04 00
N .01 AR 12 09 00 05 01 01 05 07
K- WKPC 02 01 00 00 00 01 02 02
o MT 15 10 00 01 00 01 05 06 13 00
e .03 AR 26 25 01 16 05 08 18 21
- WKPC 10 07 01 02 04 02 05 07
‘. MT 37 29 01 05 03 06 12 18 28 00
S
v .05 AR 36 36 ok 23 10 18 23 25
L WKPC 17 01 03 08 03 08 12
~ MT 48 45 01 09 09 13 18 23 38 00
‘.
o .10 AR s4 53 13 35 22 29 34 39
. WKPC 32 30 06 08 16 10 16 21
A MT 64 62 07 21 21 26 34 38 54 00
-
"--\
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Table 30. Selected ROC Points for Spuriously Low Response Patterns
Created from NORC Examinees in the 31-48% Ability Range

False Proportion detected by
alarm
rate Test LRp LR, zp Z, F1 F2 T2 TY SR DFK

15% Spuriously Low Treatment

.001 AR 00 00 01 01 00 00 00 OO

WKPC 01 00 00 0t 00 00 01 Ol

MT 02 00 00 01 00 00 01 00 00 00
.01 AR 05 01 02 02 00 01t 0t O

WKPC 09 02 0t 07 00 0! 06 05

MT 1" o4 02 05 00 01 05 03 01 00
.03 AR 4 05 08 08 01 05 06 06

WKPC 22 15 03 16 00 04 12 4

MT 26 17 06 15 00 03 09 0 06 00
.05 AR 19 1 13 12 03 09 09 07

WKPC 31 27 09 20 01 05 16 18

MT 3 26 W4 20 02 08 15 16 10 00
.10 AR 30 23 23 21 13 16 16 16

WKPC U6 41 26 35 13 14 26 28

MT 52 45 32 33 4 6 27 27 18 O

30% Spuriously Low Treatment

.001 AR 01 01 o1 01 00 00 Ot 00
L WKPC 07 01 01 02 00 00 03 03
oA MT 03 03 00 03 00 00 02 O1 01 00
"
" .01 AR 1 ol ol 05 00 03 03 o
‘ WKPC 24 21 02 19 00 02 11 16
big MT 26 26 07 16 00 02 10 12 06 00
= .03 AR 25 16 13 12 o1 09 09 10
o WKPC 41 40 16 31 00 1 20 28
é MT 50 43 23 30 00 10 17 22 15 01
! .05 AR 31 21 20 18 06 14 14 13
: WKPC 49 48 33 40 03 15 27 32

MT 62 54 40 41 05 18 25 30 23 01
_ .10 AR 48 39 33 31 19 22 22 23
: WKPC 72 62 55 56 21 30 39 ug
| MT 81 71 63 57 25 33 42 4 33 15
' 50
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:;:::_ Table 31. Selected ROC Points for Spuriously Low Response Patterns
s Created from NORC Examinees 1n the U49-64% Ability Range
- False Proportion detected by
,,_:; alarm
::.j rate Test LRp LR, zp Z, F1 F2 T2 TY SR DFK
R
154 Spuriously lLow Treatment
o 001 AR 01 00 00 01 00 00 Ol 00
- WKPC 07 02 00 0v 00 00 01 01
e MT 08 03 00 01 00 00 02 01 00 W
R .1-‘:
: .01 AR 11 05 01 o4 00 01 oY 03
WKPC 25 19 01 09 00 02 10 08
Vs MT 28 24 o1 08 00 O! 13 10 0! 00
o 03 AR 23 12 08 12 02 06 1M
R WKPC U1 36 o4 20 06 09 19 9
q MT 45 40 08 24 o4 06 21 20 05 00
& .05 AR 28 20 14 16 09 09 15 13
b, 2 WKPC u7 46 15 26 20 11 25 26
- MT 54 L9 21 32 20 15 29 26 10 00
.10 AR 39 32 25 21 23 10 271 23
| WKPC 57 58 36 45 38 24 41 4O
- MT 69 bU 42 46 42 29 45 43 16 00
..
:::-: 30% Spuriously Low Treatment
> .
.001 AR 02 02 00 01 00 00 Ol 00
J WKPC 18 06 00 o4 00 00 07T 06
MT 13 15 01 07 00 01 07 03 01 00
o .01 AR 23 10 03 10 00 02 10 08
N WKPC 40 39 03 28 00 05 23 24
" MT 50 48 09 28 00 05 27 26 08 00
e .03 AR 41 28 20 21 o4 1121 18
o WKPC 57 55 20 44 02 21 36 W
o MT 69 62 31 50 02 17 41 4y 17 00
.05 AR 4T 3% 29 21 17 25 23
. WKPC 66 63 37 51 1€ 25 L2 Lg
oy MT 77 69 53 61 21 33 50 57 24 00
oot
r:‘.
- .10 AR 61 49 U5 42 33 21 39 36
el WKPC 78 73 65 67 43 4y 57 61
e MT 87 80 75 73 51 51 66 65 37 02
N
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e Table 32. Selected ROC Points for Spuriously Low Response Patterns
‘N Created from NORC Examinees in the 65-92% Ability Range
r-. False Proportion detected by

alarm

o rate  Test LRy LR,z oz, F1 F2 T2 T4 SR DFK

) 154 Spuriously Low Treatment

- 001 AR o8 o4 00 01 00 00 01 00

N WKPC 25 T 00 00 00 00 ol 01

- MT 39 24 00 03 00 00 07 02 00 00
. .01 AR 33 21 03 11 06 03 12 09

. WKPC 46 36 00 1" 01 03 19 13
- MT 62 53 05 19 01 06 29 23 02 00
- .03 AR 45 34 16 24 23 17 24 23

" WKPC 61 53 10 24 25 15 31 28
" MT 4 66 21 4 31 22 42 38 10 00
o .05 AR 52 42 26 31 33 24 31 27
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Table 33.

Selected ROC Points for Spuriously Low Response Patterns
Created from NORC Examinees in the 93-100% Ability Range

False
alarm

Propcrtion detected by

rate

Test LR
p

LR, zp

Z,

F1

F2

T2

T4

SR

DFK

154 Spuriously Low Treatment

.00 AR 26 21 00
WKPC 48 27 00
MT 72 56 00
.01 AR 56 43 07
WKPC 67 54 02
MT 85 78 15
.03 AR 65 56 25
WKPC 76 68 17
MT 91 85 37
.05 AR 69 63 38
WKPC 81 72 35
MT 92 88 62
.10 AR 73 67 57
WKPC 85 78 61
MT 94 90 84
30% Spuriously Low Treatment
.00 AR 39 37 00
WK2C 62 43 00
MT 78 77 01
.01 AR 72 55 09
WKPC 78 75 13
MT 96 91 36
.03 AR 81 66 us
WKPC 85 83 4o
MT 98 gl T4
.05 AR 83 70 60
WKPC 89 85 63
MT 98 95 88
.10 AR 88 77 78
WKPC 94 89 85
MT 99 97 98
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In sum, the distributions of index scores for the NOKC normals had more
extreme values than did the distribution for the Study One simulated normals.
Detection rates of spuriously high examinees did not significantly decrease,
however, because there were comparable shifts in the distributions of index
scores for the aberrant samples,

The results for the spuriously low ccnditions are shown in Tables 30
through 33. The detection rates for LRp are somewhat lower in these tables

than the comparable rates (shown in Tables 22 through 25) obtained with
simulated data. The rates for LR, and 2z, remained basically unchanged. The
detection rates for LRp decreased for two reasons. First, as noted above, the

distributions of index scores for the NORC normals shifted toward more extreme
values. Second, the distributions of LRp scores for the spuriously low

conditions were essentially unchanged. Thus, the "signal" was unchanged but
the "noise" increased; therefore, the signal-to-noise ratio decreased.

Although the rates of detection of spuriously low response patterns were
lower for LRp with the NORC data than with the simulated data, some impressive

detection rates were nonetheless obtained. For example, LRp detected 85% and

62% of the 15% spuriously low examinees for the very high and high ability
ranges at a 1% false alarm rate. The corresponding rates were 96% and 76% for
the 30% spuriously low treatment.

Discussion

The transition from simulated data in Study One to real data in Study Two
was very successful for the three-parameter logistic appropriateness indices.
Although detection rates for LRp tended to be lower with the real data, some

impressive results were nonetheless obtained. For example, 82% of the NORC
examinees in the lowest ability range who were subjected to the 30% spuriously
high treatment could be detected by the optimal LRp index when the false alarm

rate was 1%; 75% could be detected by z,; and 64% could be detected by T2.

In contrast to the high detection rates obtained by the IRT
appropriateness indices, very low detection rates were obtained by the SR
measure. For example, only 4% of the very low ability, 30% spuriously high
response patterns were identified by SR at a 1%-false alarm rate. The results
for 3SR are, in fact, even worse than they appear: SR is based on 30 AR items,
50 WKPC items, 25 MK items, and 25 GS items. Thus, a total of 130 items were -
used for SR. The IRT appropriateness indices used only 80 items; considerably
higher detection rates would be expected if all 130 items were used.

The transition from simulated to real data was less successful for the
LRp index in the spuriously low conditions. Detection rates were lower for

the real data because the distributions of index scores for normal NORC
examinees were shifted toward more extreme values. The distributions for
spuriously low response vectors, in contrast to the spuriously high response
patterns, were not similarly shifted.
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One hypothesis about the differences between the results for the real and
simulated data sets concerns the distributions of ability. For simulated
data, abilities were distributed as bivariate normal, with zero means, unit
variances, and a correlation of .8. The distributions of ability for the real
data were clearly nonnormal: A second mode of the density was evident at
O = -5. This second mode is clearly shown in Figure 4,

Why would a second mode appear at a very low ability? Since the NORC
examinees were not a sample of actual recruits, i- is possible that some were
poorly motivated to do their best. Indeed, some examinees omitted every item
on entire tests. Thus, we are led to hypothesize that the bivariate ability
distribution contains a nontrivial point mass corresponding to examinees who
were very poorly motivated. An optimal index for spuriously low examinees
based on the estimated distribution of ability should lead to increased rates
of detection.

V. DISCUSSION

In the present effort, several new appropriateness indices were
developed. These indices, as well as a number of appropriateness indices
previously developed, were carefully evaluated in a series of studies. By
comparing detection rates to the rates obtained by the optimal apropriateness
indices developed by Levine and Drasgow (1984; 1987), we were able to
determine the effectiveness of all of the indices in an absolute sense.
Detection rates for the three best practical indices (z,, T2, and T4) are
presented in Figure 8 as percentages of the optimal detection rate (at a 1%
error rate).

A major result of this effort is the finding that a few of the practical
appropriateness indices (namely, z,, T2, and T4) effectively detect aberrant
response patterns across a fairly wide range of conditions. Multi-test
extensions of these indices were developed for situations in which examinees
complete a battery of short unidimensional tests. The multi-test extensions
of z,, T2, and T4 were found to provide high rates of detection of aberrant
response patterns when simulated and actual ASVAB data were used. Thus, it
was concluded that these indices, which are all based on IRT, are strong
candidates for use in operational settings.

The standardized residual (SR} index provides another approach to tre
detection of inappropriate response patterns. Unlike IRT indices, wnicr
analyze the internal consistency ¢f a response pattern, the SR irdex :e,.

external information such as scores on other tests. This external =v.:

used to predict scores on the tests of interest (e.g., AFQT subtests
large errors of prediction are taken as indicating that test scores .
aberrant.

The SR index, in contrast to the IRT indices, was founs
under all conditions. It therefore seems to be a weak oper s’
an important idea. IRT provides a much more precise and p.~ '~
detecting aberrant response patterns than the classical
concepts used by SR.
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How effective are the best practical appropriateness indices in relation
to optimal indices? The practical appropriateness indices are much better
than non-IRT alternatives such as the SR measure, but sometimes fall short of
optimal. Therefore, it seems that operational use of z,, T2, and T4 is
Justified. Moreover, a program of research designed to develop and validate
better practical appropriateness indices is also warranted. This conclusion
was reached because z,, T2, and T4 decisively outperformed SR and other IRT
indices, but fell short of optimality in some cases.

The optimal appropriateness indices used in the present research seem to
be simultaneously too specific and not specific enough to use as practical
appropriateness indices. They are too specific in that different optimal
indices must be computed for differing percentages of spuriously high and
spuriously low responses. They are not specific enough in that ability is
assumed to be distributed as standard normal in both the normal and aberrant
groups. More specific assumptions about ability distributions, particularly
for the aberrant group, would seem to be desirable in many situations.

Therefore, it is important to develop a "second generation" of optimal
indices that could be used in practice to test hypotheses that are very
general in some ways but very specific in others. Examples of some hypotheses
that may be important to test include the following:

1. Was a response vector generated by a normal examinee or was it
generated by a very low ability (AFQT Category V) examinee who was cheating on
10 to 30 items? Low ability cheaters would be expected to have high rates of
attrition in training and generally poor on-the-job performance, both of which
are very costly.

2. Was a response vector generated by a high average (AFQT Category 3A4)
examinee or a low average (AFQT Category 3B) examinee who was cheating on a
moderate number of items? Recruitment bonuses for AFQT Category 3A scores may
provide a powerful incentive for examinees slightly below average to cheat.

3. Suppose it is known that part or all of one subtest is no longer
secure. Was a response pattern generated by a normal examinee or by an
examinee who had prior access to the compromised items?

4, Are members of an ethnic minority penalized because a test was
developed and standardized using majority group members as examinees? The
likelihood of the response pattern could be computed using item parameters
estimated from a majority group sample and from a minority group sample. If
the test is fair, then even the optimal appropriateness index would be unable
to effectively classify majority and minority group members. In this way, the
methodology of optimal indices is applied to determine the extent to which
ethnicity can be determined from item response patterns.

Refinements in optimal indices would enable very powerful detection of
aberrant response patterns. For example, suppose we suspect that a very low
ability examinee has been given answers to a moderate number of items on the
AR, WK, and PC subtests in order to obtain an AFQT score that qualifies
him/her for a bonus. Furthermore, suppose that there was no cheating on the
non-AFQT subtests. Then we could test the hypothesis that the examinee was
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normal against the hypothesis that a low ability examinee cheated on 20 to 30
items on the AR, WK, and PC subtests and cheated on 0 items on the MK and GS
tests. Examinees who are aberrant in this particular way should be clearly
identifiable.

A significant part of the theory necessary for more sophisticated optimal
indices has already been developed by Levine and Drasgow (1984; 1987).
Nonetheless, a considerable amount of work is necessary to transform their
theoretical notions, which were developed in the context of a unidimensional
latent trait space, into methods that can be used to test the aberrance
hypotheses listed above.

It may seem that computing second-generation optimal indices would be
extremely burdensome. It is true that extensive calculations would be
necessary. The recursive methods described bty Levine and Drasgow (1984; 1987)
and the quadratic approximation and multi-test generalizations developed here
considerably reduce the computing load. Furthermore, the rapid advances in
Levine's (1985a; 1985b) MFS theory allow algebraic simplifications and
eliminate the need for arbitrary assumptions about the ability density. In
particular, MFS now permits one to bypass the quadratic approximation used in
Chapter IV and relax the assumption of multivariate normal abilities.
Multidimensional extensions of Levine's theory are being developed to estimate
the Joint distribution of several abilities.

Finally, there are two important substantive questions about
Appropriateness Measurement that need to be addressed. First, the ability
densities estimated from the NORC sample depart significantly from a normal
density. This has led us to reconsider the way in which we compute optimal
indices. However, the NORC sample is not a sample of individuals who are
actually trying to enlist in the military. Would our results concerning
ability densities be replicated if data from actual recruits were used? Or
would the results be more similar to our studies with SAT-V data?

The second substantive question concerns the distributions of
appropriateness index scores in samples of women and ethnic minorities.
Finding similar distributions across all relevant groups would support the
view that standardized tests in general, and the ASVAB in particular, assess
ability fairly. This finding would be highly significant in light of the
underprediction of women's performances reported in some military training
schools (Dunbar & Novick, 1985).
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& APPENDIX A: GOODNESS OF FIT OF AR COCCs ESTIMATED FROM A SAMPLE OF
X N=2,891 AND EVALUATED USING THE ENTIRE SAMPLE OF N=11,914
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" APPENDIX B: ESTIMATED COCCS, SIMULATION COCCS, AND
N EMPIRICAL PROPORTIONS FROM ESTIMATION SAMPLE
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APPENDIX C: MULTITEST EXTENSIONS OF OPTIMAL INDICES

An approximation to the likelihoods required for an optimal statistic for
two unidimensional tests is given in this appendix. The approach easily
generalizes tom > 2 dimensions.

To begin, rewrite F* from Equation 31 as

E* = 11 {P(U, = u,10,)(6(8,)/8(8,)]]

“{P(U, = u,18,)(6(8,)/¢(8,) 1} ¢,(8;0,E)d0

2 2
2rr (e 0P80 00,)] (22957028570 406 ) 100, (050,200

- gy ea,6§+b,6,+c, e(1/2)9ﬁ ea26§+b292+c2 e(1/2)8§

- 2 _ 2 2_
e(detr)” /2 o(01-208,6,+67)/2(p*-1) 4o

:E,
where ¢(e) is the standard normal density. For the next step in our analysis,
it is useful to rewrite this equation in matrix notation,

Consequently, let

a, O _ b,
Ay = lg ol » by = [o'] »
00 (0
A= lpa,l by = [y, ]
172 0 0 0
K=" ol K=y 40l
_ 1 1 -py _ 71 -1
Ky = 3(peony lp 117 -2 F
Then
172 , ,
F = (detl) {1 exp(0'A.0 - b8 + c. + 0'K0
) ] ] )
£ 080 + b0+ ¢, + 0'K,0 + 0'K;0]d0
= (detZ)” 172 e%'*C || exp(0'AO + b'0]dE
where
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and

To complete the square in the exponent of the above integrand, notice
that since A is symmetric,

0'A0 + b'A” A + %b'A'1AA-1b - %b'A b

= — — - —b'
= (0 + 2A b) A(O + 2A b) A b,
provided that A is negative definite. Diagonalize A by A = VAV',
where V'V = I, let k = - %b'A'1b, and let w = (detp)™/2eC1*Ca*K  ppen
- 2 i - -
o= (detB)™% e 11 exp((8 + 2a7Tb)" VAV (8 + 207 'b) Jao
= w [/ exp[B'VAV'O]dO
= w Jf exp[t'At]ldt ,
where t = (t1, t2)' 2 'V, because the Jacobian of the transformation is one.

The middle equality above holds because the volume of the bivariate density is
unaffected by the location parameter. Since A is diagonal with
negative diagonal elements Al and A2,

F =w/ exp[- % 3?(-2)\.)]dt1 [ expl- % E_S(-ZAZ)]dt2

1.2 2 1 .2 2

= W | expl- 5 51 / 01]dt1 | expl- 5 32 / 02]dt2

= 2nwo102 ,
here -2X. = 1/0° = 1,2. B 20,0, = 1/VA A, = (det/\)'”2
where - j* OJ' J = 1,e. ecause 195 © 1A =

= (de tA)'”2 we obtain
F = nu(detd)” /2
= exple, + ¢, - b'a”'b/u] (detf)” /2 (deta)™'/2

as the final expression for our approximation to F* given in Equation 31.
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